Page 426 - Numerical Methods for Chemical Engineering
P. 426

Bayesian multiresponse regression                                   415



                    = cov(ε). From the measured responses, we form the N × L response data matrix
                                                       y
                                                       [1]   
                                                       y [2]
                                                             
                                                                                  (8.180)
                                                        .     
                                                        .
                                             Y = 
                                                       .     
                                                      y [N]
                  We assume that the errors in each experiment are drawn independently from a multivariate
                  normal distribution with zero mean,

                                                  1            1  T  −1
                                    p(ε| ) =             exp − ε   ε                (8.181)
                                             (2π) L/2 | | 1/2  2
                  Thus, the probability of observing a response y [k]  in experiment k is
                                                                                       1
                        [k]         −L/2  −1/2      1    [k]     [k]     T  −1     [k]     [k]
                    p y |θ,  = (2π)    | |    exp −   y  − f x ; θ       y  − f x ; θ
                                                    2
                                                                                    (8.182)
                  Assuming independent errors in each experiment, the likelihood function for the multi-
                  response data is
                                                           N
                                                             p y |θ,
                                    l(θ, |Y) = p(Y|θ, ) =  0    [k]                 (8.183)
                                                          k=1
                               a b
                  Using the rule e e = e a+b ,wehave
                      l(θ, |Y) = (2π) −NL/2 | | −N/2
                                      9                                          :
                                        1    N     [k]     [k]     T  −1     [k]     [k]
                                × exp −         y  − f x ; θ       y  − f x ; θ     (8.184)
                                        2   k=1
                  We next define the L × L positive-definite matrix S(θ) with the elements
                                      N
                                                                 [k]

                                                  [k]

                             S ab (θ) =  	   y  [k]  − f a x ; θ     y  [k]  − f b x ; θ     (8.185)
                                          a              b
                                     k=1
                  and write the likelihood function as
                                                            1

                            l(θ, |Y) = (2π) −NL/2  | | −N/2  exp − tr[   −1 S(θ)]    (8.186)
                                                            2
                  For this l(θ, |Y), the noninformative prior is (Box & Tiao, 1973)
                          p(θ, ) = p(θ)p( )    p(θ) ∼ c   p( ) ∝| | −(L+1)/2        (8.187)
                  Therefore, the posterior density p(θ, |Y) ∝ l(θ, |Y)p(θ)p( )is
                                                                         1
                                                              1    −1
                                               −(N+L+1)/2
                                        −NL/2
                         p(θ, |Y) ∝ (2π)     | |        exp − tr[    S(θ)]          (8.188)
                                                              2
                  For this posterior density, of the form of a Wishart distribution, the marginal posterior
                  density for θ can be computed analytically:
                                              '
                                                                   −N/2
                                     p(θ|Y) =    p(θ, |Y)d  ∝ |S(θ)|                (8.189)
                                              >0
   421   422   423   424   425   426   427   428   429   430   431