Page 434 - Numerical Methods for Chemical Engineering
P. 434

Analysis of composite data sets                                     423



                  Y hat = feval(fun yhat j, theta, X pred j);
                  The following code sets the MRSLData structure for a composite data set combining the
                  results of Table 8.1 and Table 8.3:
                  % specify the number of data sets
                  MRSLData.num sets = 2;
                  % specify the number of parameters to be fitted
                  MRSLData.P = 1;
                  % allocate memory for dimensioning parameters
                  MRSLData.N = zeros(MRSLData.num sets,1);
                  MRSLData.L = zeros(MRSLData.num sets,1);
                  MRSLData.M = zeros(MRSLData.num sets,1);
                  %--DATASET#1--TABLE 1
                  % For the first data set (the contents of
                  % Table 1), input the predictor matrix.
                  MRSLData.X pred 1 = [0.1 0.1; 0.2 0.1; 0.1 0.2; . . .
                      0.2 0.2; 0.05 0.2; 0.2 0.05];
                  % input the response data matrix
                  MRSLData.Y 1 = [0.0246e-3; 0.0483e-3; 0.0501e-3; . . .
                      0.1003e-3; 0.0239e-3; 0.0262e-3];
                  % specify the name of the routine that predicts
                  % the responses.
                  MRSLData.fun yhat 1 = ‘calc yhat kinetic ex table1’;
                  % set the dimension parameters for the data set
                  MRSLData.N(1) = size(MRSLData.Y 1,1);
                  MRSLData.L(1) = size(MRSLData.Y 1,2);
                  MRSLData.M(1) = size(MRSLData.X pred 1,2);
                  %--DATASET#2--TABLE 3
                  % For the second data set (the contents of Table
                  % 3), input the predictor matrix
                  time hr = [0.5; 1; 1.5; 2; 3; 4; 5; 6; 7; 8; 9; 10];
                  time s = time hr*3600; % convert hr to sec
                  MRSLData.X pred 2 = time s; % set predictor matrix
                  % input the measured response data matrix
                  cA = [0.0985; 0.0637; 0.0500; 0.0462; 0.0363; 0.0248; . . .
                        0.0171; 0.0168; 0.0131; 0.0150; 0.0140; 0.0134];
                  cB = [0.0995; 0.0651; 0.0596; 0.0453; 0.0384; 0.0247; . . .
                        0.0174; 0.0203; 0.0136; 0.0121; 0.0142; 0.0134];
                  cC = [0.001; 0.0357; 0.0501; 0.0512; 0.0682; 0.0747; . . .
                        0.0809; 0.0818; 0.0858; 0.0863; 0.0872; 0.0928];
                  MRSLData.N(2)= length(cA);
                  MRSLData.L(2) = 3;
                  MRSLData.M(2) = size(MRSLData.X pred 2,2);
                  MRSLData.Y 2 = zeros(MRSLData.N(2),MRSLData.L(2));
                  MRSLData.Y 2(:,1) = cA;
   429   430   431   432   433   434   435   436   437   438   439