Page 295 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 295

286                              Appendix B
                                                       ð
                                                      …
                                                         f (è)cos mè dè ˆ ða m
                                                       ÿð
                             If we multiply both sides of equation (B.1) by sin mè, integrate from ÿð to ð, and
                             apply equations (A.13), (A.15), and (A.16), we ®nd
                                                       ð
                                                      …
                                                          f (è)sin mè dè ˆ ðb m
                                                       ÿð
                             Thus, the coef®cients in the Fourier series are given by
                                                  1  … ð
                                             a n ˆ     f (è)cos nè dè,  n ˆ 0, 1, 2, .. .      (B:2a)
                                                  ð  ÿð
                                                  1  … ð
                                             b n ˆ     f (è)sin nè dè,  n ˆ 1, 2, ...          (B:2b)
                                                  ð  ÿð
                               In deriving these expressions for a n and b n , we assumed that f (è) is continuous. If
                             f (è) has a ®nite discontinuity at some angle è 0 where ÿð , è 0 , ð, then the expres-
                             sion for a n in equation (B.2a) becomes
                                                  1  …  è 0          1  … ð
                                             a n ˆ     f (è)cos nè dè ‡  f (è)cos nè dè
                                                  ð  ÿð              ð  è 0
                             A similar expression applies for b n . The generalization for a function f (è) with a ®nite
                             number of ®nite discontinuities is straightforward. At an angle è 0 of discontinuity, the
                             Fourier series converges to a value of f (è) mid-way between the left and right values
                             of f (è)at è 0 ; i.e., it converges to
                                                        1
                                                     lim  [f (è 0 ÿ å) ‡ f (è 0 ‡ å)]
                                                     å!0 2
                               The Fourier expansion (B.1) may also be expressed as a cosine series or as a sine
                             series by the introduction of phase angles á n
                                                               1
                                                              X
                                                          a 0
                                                   f (è) ˆ  ‡    c n cos(nè ‡ á n )            (B:3a)
                                                          2
                                                              nˆ1
                                                          1
                                                          X
                                                       ˆ     c9 n sin(nè ‡ á9 n )              (B:3b)
                                                          nˆ0
                             where c n , c9 n , á n , á9 n are constants. Using equation (A.35), we may write
                                           c n cos(nè ‡ á n ) ˆ c n cos nè cos á n ÿ c n sin nè sin á n
                             If we let
                                                          a n ˆ c n cos á n

                                                          b n ˆÿc n sin á n
                             then equations (B.1) and (B.3a) are seen to be equivalent. Using equation (A.36), we
                             have

                                           c9 n sin(nè ‡ á9 n ) ˆ c9 n sin nè cos á9 n ‡ c9 n cos nè sin á9 n
                             Letting
                                                       a 0 ˆ 2c9 0 sin á9 0
                                                       a n ˆ c9 n sin á9 n ,  n . 0
                                                       b n ˆ c9 n cos á9 n ,  n . 0
   290   291   292   293   294   295   296   297   298   299   300