Page 299 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 299

290                              Appendix B

                               Another generalized form may be obtained by exchanging the roles of x and t in
                             equations (B.19) and (B.20), so that
                                                          1  … 1      i[k(ù)xÿùt]
                                                 f (x, t) ˆ p   G(ù)e   dù               (B:21)
                                                           2ð ÿ1
                                                            …
                                                         1   1        ÿi[k(ù)xÿùt]
                                                 G(ù) ˆ p   f (x, t)e    dt              (B:22)
                                                         2ð ÿ1


                             Fourier integral in three dimensions
                             The Fourier integral may be readily extended to functions of more than one variable.
                             We now derive the result for a function f (x, y, z) of the three spatial variables x, y, z.
                             If we consider f (x, y, z) as a function only of x,with y and z as parameters, then we
                             have
                                                            1  …  1          ik x x
                                                f (x, y, z) ˆ p   g 1 (k x , y, z)e  dk x  (B:23a)
                                                            2ð ÿ1
                                                            1  …  1
                                              g 1 (k x , y, z) ˆ p   f (x, y, z)e ÿik x x  dx  (B:23b)
                                                            2ð ÿ1
                             We next regard g 1 (k x , y, z) as a function only of y with k x and z as parameters and
                             express g 1 (k x , y, z) as a Fourier integral
                                                            1  …  1           ik y y
                                              g 1 (k x , y, z) ˆ p   g 2 (k x , k y , z)e  dk y  (B:24a)
                                                            2ð ÿ1
                                                            1  …  1          ÿik y y
                                              g 2 (k x , k y , z) ˆ p   g 1 (k x , y, z)e  dy  (B:24b)
                                                            2ð ÿ1
                             Considering g 2 (k x , k y , z) as a function only of z,wehave
                                                               …
                                                            1   1             ik z z
                                              g 2 (k x , k y , z) ˆ p   g(k x , k y , k z )e  dk z  (B:25a)
                                                            2ð ÿ1
                                                               …
                                                            1   1             ÿik z z
                                              g(k x , k y , k z ) ˆ p   g 2 (k x , k y , z)e  dz  (B:25b)
                                                             2ð ÿ1
                             Combining equations (B.23a), (B.24a), and (B.25a), we obtain
                                                     1
                                                     ………
                                                 1                 i(k x x‡k y y‡k z z)
                                    f (x, y, z) ˆ  3=2  g(k x , k y , k k )e  dk x dk y dk z  (B:26a)
                                              (2ð)
                                                     ÿ1
                             Combining equations (B.23b), (B.24b), and (B.25b), we have
                                                         1
                                                        ………
                                                    1               ÿi(k x x‡k y y‡k z z)
                                    g(k x , k y , k k ) ˆ   f (x, y, z)e        dx dy dz      (B:26b)
                                                  (2ð) 3=2
                                                        ÿ1
                               If we de®ne the vector r with components x, y, z and the vector k with components
                             k x , k y , k z and write the volume elements as
                                                          dr ˆ dx dy dz
                                                          dk ˆ dk x dk y dk z
                             then equations (B.26) become
   294   295   296   297   298   299   300   301   302   303   304