Page 314 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 314

Legendre and associated Legendre polynomials         305
                                                                   m
                                                                  d g(ì, s)
                                                             2 m=2
                                              (m)
                                             g  (ì, s) ˆ (1 ÿ ì )
                                                                    dì m
                        Since
                                     m
                                    d g(ì, s)                   m           2 ÿ(m‡ )
                                                       :
                                                                                  1
                                                 : :
                                             ˆ 3 5      (2m ÿ 1)s (1 ÿ 2ìs ‡ s )  2
                                      dì m
                                               (2m)!                  1
                                                                 2 ÿ(m‡ )
                                                     m
                                             ˆ      s (1 ÿ 2ìs ‡ s )  2
                                                m
                                               2 m!
                        we have
                                                 1                       2 m=2 m
                                                 X   m    l    (2m)!(1 ÿ ì )  s
                                       (m)
                                      g  (ì, s) ˆ   P (ì)s ˆ   m                 1        (E:11)
                                                     l
                                                                             2 m‡
                                                 lˆm         2 m!(1 ÿ 2ìs ‡ s )  2
                                                            m
                          We can also write an explicit series for P (ì) by differentiating equation (E.2) m
                                                            l
                        times
                                                         M9     á          lÿmÿ2á
                                                        X   (ÿ1) (2l ÿ 2á)!ì
                                        m
                                                   2 m=2
                                      P (ì) ˆ (1 ÿ ì )                                    (E:12)
                                        l                  2 á!(l ÿ á)!(l ÿ m ÿ 2á)!
                                                            l
                                                        áˆ0
                        where M9 ˆ (l ÿ m)=2or(l ÿ m ÿ 1)=2, whichever is an integer. Furthermore,
                        combining equation (E.10) with Rodrigues' formula (E.9), we see that
                                                   1            d l‡m
                                            m              2 m=2       2    l
                                          P (ì) ˆ     (1 ÿ ì )       (ì ÿ 1)              (E:13)
                                            l      l              l‡m
                                                  2 l!          dì
                          The ®rst few associated Legendre polynomials are
                                                 0
                                                P (ì) ˆ P 0 (ì) ˆ 1
                                                 0
                                                 0
                                                P (ì) ˆ ì
                                                 1
                                                 1
                                                             2 1=2
                                                P (ì) ˆ (1 ÿ ì )
                                                 1
                                                 0
                                                                  2
                                                               1
                                                P (ì) ˆ P 2 (ì) ˆ (3ì ÿ 1)
                                                 2             2
                                                 1
                                                               2 1=2
                                                P (ì) ˆ 3ì(1 ÿ ì )
                                                 2
                                                              2
                                                 2
                                                P (ì) ˆ 3(1 ÿ ì )
                                                 2
                                                     .
                                                     .
                                                     .
                        Differential equation
                                                                      m
                        The differential equation satis®ed by the polynomials P (ì) may be obtained as
                                                                      l
                        follows. Let r ˆ l ‡ m in equation (E.8) and de®ne w m as
                                                                       m
                                                   d l‡m  2    l   l  d P l
                                             w m        (ì ÿ 1) ˆ 2 l!                    (E:14)
                                                  dì l‡m              dì m
                        so that
                                                                    m
                                                      l
                                                             2 ÿm=2
                                               w m ˆ 2 l!(1 ÿ ì )  P (ì)                  (E:15)
                                                                    l
                        Equation (E.8) then becomes
                                      2
                                   2
                              (1 ÿ ì )  d w m  ÿ 2(m ‡ 1)ì  dw m  ‡ [l(l ‡ 1) ÿ m(m ‡ 1)]w m ˆ 0  (E:16)
                                      dì 2            dì
   309   310   311   312   313   314   315   316   317   318   319