Page 319 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 319

Appendix F

                                   Laguerre and associated Laguerre polynomials

















                                                      Laguerre polynomials
                             The Laguerre polynomials L k (r) are de®ned by means of the generating
                             function g(r, s)
                                                                      1
                                                           e ÿrs=(1ÿs)  X     s k
                                                   g(r, s)               L k (r)                 (F:1)
                                                             1 ÿ s            k!
                                                                      kˆ0
                             where 0 < r < 1 and where jsj , 1 in order to ensure convergence of the in®nite
                             series. Since the right-hand term is a Taylor series expansion of g(r, s), the Laguerre
                             polynomials are given by

                                                      k              k
                                                     @ g(r, s)     @    e ÿrs=(1ÿs)
                                              L k (r) ˆ          ˆ                               (F:2)
                                                       @s k        @s k  1 ÿ s
                                                              sˆ0                 sˆ0
                                                                               r
                               To evaluate L k (r) from equation (F.2), we ®rst factor out e in the generating
                             function and expand the remaining exponential function in a Taylor series
                                                                                      á á
                                                                               1
                                                          1
                                       e r  ÿr=(1ÿs)  e r X  (ÿ1) á     r    á  r  X  (ÿ1) r   ÿ(á‡1)
                              g(r, s) ˆ    e       ˆ                      ˆ e            (1 ÿ s)
                                      1 ÿ s          1 ÿ s    á!    1 ÿ s            á!
                                                          áˆ0                  áˆ0
                             We then take k successive derivatives of g(r, s) with respect to s
                                                              á á
                                                       1
                                          @ g(r, s)  r  X  (ÿ1) r            ÿ(á‡2)
                                                  ˆ e            (á ‡ 1)(1 ÿ s)
                                             @s             á!
                                                       áˆ0
                                           2
                                                              á á
                                                       1
                                          @ g(r, s)  r  X  (ÿ1) r                  ÿ(á‡3)
                                                  ˆ e            (á ‡ 1)(á ‡ 2)(1 ÿ s)
                                            @s 2            á!
                                                       áˆ0
                                                   . . .
                                                              á á
                                           k
                                                       1
                                          @ g(r, s)   X   (ÿ1) r (á ‡ k)!
                                                  ˆ e r                 (1 ÿ s) ÿ(á‡k‡1)
                                            @s k            á!      á!
                                                       áˆ0
                             When the kth derivative is evaluated at s ˆ 0, we have
                                                                    á
                                                              1  (ÿ1) (á ‡ k)!
                                                             X
                                                   L k (r) ˆ e r            r á                  (F:3)
                                                                    (á!) 2
                                                             áˆ0
                                                               310
   314   315   316   317   318   319   320   321   322   323   324