Page 320 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 320

Laguerre and associated Laguerre polynomials         311

                        Using equation (A.1) we note that
                                                                          á
                                                                   1
                                                    1
                                   d k  k ÿr    d  k X (ÿ1) á  á‡k  X (ÿ1) (á ‡ k)!  á
                                      (r e ) ˆ              r   ˆ                 r        (F:4)
                                   dr k        dr k     á!                (á!) 2
                                                   áˆ0            áˆ0
                        Combining equations (F.3) and (F.4), we obtain the formula for the Laguerre
                        polynomials
                                                                 k ÿr
                                                  L k (r) ˆ e r  d k  (r e )               (F:5)
                                                           dr k
                          Another relationship for the polynomials L k (r) can be obtained by expanding the
                        generating function g(r, s) in equation (F.1) using (A.1)
                                                                   á á
                                                 e ÿrs=(1ÿs)  X  (ÿ1) r  s á
                                                            1
                                         g(r, s) ˆ       ˆ
                                                   1 ÿ s         á!   (1 ÿ s) á‡1
                                                           áˆ0
                        The factor (1 ÿ s) ÿ(á‡1)  may be expanded in an in®nite series using equation (A.3) to
                        obtain
                                                             1
                                                            X  (á ‡ â)!  â
                                                    ÿ(á‡1)
                                               (1 ÿ s)    ˆ            s
                                                                 á!â!
                                                            âˆ0
                        so that g(r, s) becomes
                                                    1  1      á        á
                                                   X X    (ÿ1) (á ‡ â)!r
                                           g(r, s) ˆ                    s á‡â
                                                              (á!) â!
                                                                 2
                                                   áˆ0 âˆ0
                                                        k
                        We next collect all the coef®cients of s for an arbitrary k, so that á ‡ ⠈ k, and
                        replace the summation over á by a summation over k. When á ˆ k, the index â equals
                        zero; when á ˆ k ÿ 1, the index â equals one; and so on until we have á ˆ 0 and
                        ⠈ k. Thus, the result of the summation is
                                                        1  k      kÿâ kÿâ
                                                       X X    (ÿ1)  r     k
                                             g(r, s) ˆ k!                s
                                                                      2
                                                              [(k ÿ â)!] â!
                                                       kˆ0 âˆ0
                                                                                     k
                          Since the Laguerre polynomial L k (r) divided by k! is the coef®cient of s in the
                        expansion (F.1) of the generating function, we have
                                                         k       kÿâ
                                                        X    (ÿ1)
                                             L k (r) ˆ (k!) 2         r kÿâ
                                                           [(k ÿ â)!] â!
                                                                   2
                                                        âˆ0
                        If we let k ÿ ⠈ ã and replace the summation over â by a summation over ã,we
                        obtain the desired result
                                                          k        ã
                                                         X     (ÿ1)     ã
                                                        2
                                              L k (r) ˆ (k!)           r                   (F:6)
                                                               2
                                                            (ã!) (k ÿ ã)!
                                                         ãˆ0
                          A third relationship for the polynomials L k (r) can be obtained by expanding the
                        derivative in equation (F.5), using (A.4), to give
                                            k           á k  kÿá ÿr   k      kÿá  á k
                                           X      k!   d r d   e     X  (ÿ1)    k! d r
                                         r
                                 L k (r) ˆ e                       ˆ
                                              á!(k ÿ á)! dr á  dr kÿá   á!(k ÿ á)! dr á
                                           áˆ0                       áˆ0
                                                              k
                        We now observe that the operator [(d=dr) ÿ 1] may be expanded according to the
                        binomial theorem (A.2) as
   315   316   317   318   319   320   321   322   323   324   325