Page 322 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 322

Laguerre and associated Laguerre polynomials         313
                                             ÿrs=(1ÿs)       j j                    k
                                         j
                                                                            1
                                        d   e            (ÿ1) s  ÿrs=(1ÿs)  X   j  s
                             g(r, s; j) ˆ             ˆ          e       ˆ    L (r)       (F:10)
                                                                                k
                                       dr j   1 ÿ s     (1 ÿ s) j‡1                 k!
                                                                           kˆ j
                        The summation in the right-hand term begins with k ˆ j, since j cannot exceed k.
                                                        j
                          We can write an explicit series for L (r) by substituting equation (F.6) into (F.9)
                                                        k
                                          k        ã     j           k          ã
                                         X     (ÿ1)     d          X        (ÿ1)
                               j        2                   ã     2                    ãÿ j
                             L (r) ˆ (k!)                 r ˆ (k!)                    r
                               k            (ã!) (k ÿ ã)! dr j         ã!(k ÿ ã)!(ã ÿ j)!
                                               2
                                         ãˆ0                        ㈠j
                        The summation over ã now begins with the term 㠈 j because the earlier terms
                        vanish in the differentiation. If we let ã ÿ j ˆ á and replace the summation over ã by
                        a summation over á,we have
                                                       kÿ j        j‡á á
                                                      X        (ÿ1)  r
                                            j        2
                                           L (r) ˆ (k!)                                   (F:11)
                                            k             á!(k ÿ j ÿ á)!(j ‡ á)!
                                                       áˆ0
                          For the purpose of deriving some useful relationships involving the polynomials
                                                    j
                         j
                        L (r), we de®ne the polynomial Ë (r)as
                         k                          i
                                                           i!
                                                   j             j
                                                 Ë (r)         L i‡ j (r)                 (F:12)
                                                   i
                                                         (i ‡ j)!
                        If we replace the dummy index of summation k in equation (F.10) by i, where
                        i ˆ k ÿ j, then (F.10) takes the form
                                                        j                 j
                                                                     1
                                                    1
                                                   X L    (r)        X
                                                        i‡ j  i‡ j  j   Ë (r)  i
                                                                          i
                                         g(r, s; j) ˆ        s  ˆ s          s
                                                      (i ‡ j)!            i!
                                                   iˆ0               iˆ0
                               j
                        Thus, Ë (r) are just the coef®cients in a Taylor series expansion of the function
                              i
                        s ÿ j  g(r, s; j) and are, therefore, given by
                                                       @ i
                                                 j         ÿ j
                                               Ë (r) ˆ    s  g(r, s; j)
                                                 i
                                                       @s i
                                                                     sˆ0
                        Substituting for g(r, s; j) using equation (F.10), we obtain
                                                  "        #
                                               @ i  e ÿrs=(1ÿs)
                                    j         j
                                  Ë (r) ˆ (ÿ1)
                                    i            i
                                               @s  (1 ÿ s)  j‡1
                                                             sˆ0
                                                  "         #
                                               @ i  e e
                                                    r ÿr=(1ÿs)
                                        ˆ (ÿ1) j
                                               @s i  (1 ÿ s)  j‡1
                                                              sˆ0
                                                  "                  #
                                                      1
                                               @ i   X      (ÿr) á
                                        ˆ (ÿ1) j   e r
                                               @s i     á!(1 ÿ s) ᇠj‡1
                                                     áˆ0               sˆ0
                                                        á
                                                 1  (ÿr) (á ‡ j ‡ i)!
                                                 X
                                              j r
                                        ˆ (ÿ1) e                   (1 ÿ s) ÿ(ᇠj‡i‡1)
                                                      á!   (á ‡ j)!
                                                 áˆ0                              sˆ0
                                                 1
                                                 X  (á ‡ j ‡ i)!
                                              j r
                                        ˆ (ÿ1) e              (ÿr) á                      (F:13)
                                                     á!(á ‡ j)!
                                                 áˆ0
                        We next note that
   317   318   319   320   321   322   323   324   325   326   327