Page 323 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 323
314 Appendix F
á
1
1
d i i j ÿr d i X (ÿ1) á á ji X (ÿ1) (á j i)! á j
(r e ) r r
dr i dr i á! á! (á j)!
á0 á0
1
X (á j i)!
r j (ÿr) á (F:14)
á!(á j)!
á0
Comparison of equations (F.13) and (F.14) yields the result that
j
j ÿ j r
Ë (r) (ÿ1) r e d i (r i j ÿr
e )
i
dr i
From equation (F.12) we obtain
(i j)! d i
j j ÿ j r i j ÿr
L (r) (ÿ1) r e (r e )
i j i
i! dr
Finally, replacing i by the original index k ( i j), we have
k! ÿ j r d kÿ j k ÿr
j
j
L (r) (ÿ1) r e (r e ) (F:15)
k (k ÿ j)! dr kÿ j
Equation (F.15) for the associated Laguerre polynomials is the analog of (F.5) for the
Laguerre polynomials and, in fact, when j 0, equation (F.15) reduces to (F.5).
Differential equation
The differential equation satis®ed by the associated Laguerre polynomials may be
obtained by repeatedly differentiating equations (F.8) j times
3 2
r d L k (2 ÿ r) d L k (k ÿ 1) dL k 0
dr 3 dr 2 dr
4 3 2
r d L k (3 ÿ r) d L k (k ÿ 2) d L k 0
dr 4 dr 3 dr 2
.
. .
j
d j2 L k d j1 L k d L k
r (j 1 ÿ r) (k ÿ j) 0
dr j2 dr j1 dr j
j
When the polynomials L (r) are introduced with equation (F.9), the differential
k
equation is
2
d L j dL j j
r k (j 1 ÿ r) k (k ÿ j)L (r) 0 (F:16)
dr 2 dr k
Integral relations
In order to obtain the orthogonality and normalization relations of the associate
Laguerre polynomials, we make use of the generating function (F.10). We multiply
together g(r, s; j), g(r, t; j), and the factor r jí ÿr and then integrate over r to give
e
an integral that we abbreviate with the symbol I
1
1
s t
1 X X á â 1 j
j
e
e
I r jí ÿr g(r, s; j)g(r, t; j)dr r jí ÿr L (r)L (r)dr
â
á
0 á j â j á!â! 0
(F:17)

