Page 324 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 324

Laguerre and associated Laguerre polynomials         315

                        To evaluate the left-hand integral, we substitute the analytical forms of the generating
                        functions from equation (F.10) to give
                                                     (st) j    …  1  j‡í ÿar
                                           I ˆ                    r   e   dr              (F:18)
                                               (1 ÿ s) j‡1 (1 ÿ t) j‡1  0
                        where
                                                    s      t        1 ÿ st
                                           a   1 ‡     ‡      ˆ
                                                  1 ÿ s  1 ÿ t  (1 ÿ s)(1 ÿ t)
                        The integral in equation (F.18) is just the gamma function (A.26), so that
                                   …
                                    1              Ã(j ‡ í ‡ 1)  (j ‡ í)!
                                      r j‡í ÿar  dr ˆ         ˆ       ,     j ‡ í . 0
                                          e
                                    0                a j‡í‡1    a j‡í‡1
                        where we have restricted í to integer values. Thus, I in equation (F.18) is
                                                                 í
                                                           j
                                                  (j ‡ í)!(st) (1 ÿ s) (1 ÿ t) í
                                              I ˆ
                                                        (1 ÿ st)  j‡í‡1
                        Applying the expansion formula (A.3), we have
                                                            1
                                                           X  (j ‡ í ‡ i)!
                                           (1 ÿ st) ÿ( j‡í‡1)  ˆ        (st) i
                                                               (j ‡ í)!i!
                                                           iˆ0
                        If we replace the dummy index i by á, where á ˆ i ‡ j, then this expression becomes
                                                         1
                                                        X      (á ‡ í)!
                                         (1 ÿ st) ÿ( j‡í‡1)  ˆ           (st) áÿ j
                                                            (j ‡ í)!(á ÿ j)!
                                                        ሠj
                        and I takes the form
                                                              1  (á ‡ í)!
                                                             X
                                                     í
                                            I ˆ (1 ÿ s) (1 ÿ t) í      (st) á
                                                                (á ÿ j)!
                                                             ሠj
                        Combining this result with equation (F.17), we have
                          X X á â   … 1                                   X  (á ‡ í)!
                              1
                           1
                                                                           1
                                s t
                                                                  í
                                               j
                                                    j
                                       r j‡í ÿr L (r)L (r)dr ˆ (1 ÿ s) (1 ÿ t) í    (st) á  (F:19)
                                           e
                                á!â!           á    â                        (á ÿ j)!
                          ሠj ∠j  0                                    ሠj
                          We now equate coef®cients of like powers of s and t on each side of this equation.
                        Since the integer í appears as an exponent of both s and t on the right-hand side, the
                        effect of equating coef®cients depends on the value of í. Accordingly, we shall ®rst
                        have to select a value for í.
                          For í ˆ 0, equation (F.19) becomes
                                    X X á â    …  1         j        X    á!
                                        1
                                                                      1
                                     1
                                           s t
                                                   j ÿr
                                                        j
                                                 r e  L (r)L (r)dr ˆ           (st) á
                                                       á
                                           á!â!             â           (á ÿ j)!
                                    ሠj ∠j   0                    ሠj
                        Since the exponent of s on the right-hand side is always the same as the exponent of t,
                                        á â
                        the coef®cients of s t for á 6ˆ â on the left-hand side must vanish, i.e.
                                           …
                                            1
                                               j ÿr
                                                    j
                                                        j
                                             r e  L (r)L (r)dr ˆ 0;    á 6ˆ â             (F:20)
                                                        â
                                                   á
                                            0
                        Thus, the associated Laguerre polynomials form an orthogonal set over the range
                                                       j ÿr
                        0 < r < 1 with a weighting factor r e . For the case where s and t on the left-hand
                        side have the same exponent, we pick out the term ⠈ á in the summation over â,
                        giving
   319   320   321   322   323   324   325   326   327   328   329