Page 316 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 316

Legendre and associated Legendre polynomials         307
                                                         1
                                                        …
                                                                 2
                                                   I l0 ˆ  [P l (ì)] dì
                                                         ÿ1
                        We solve the recurrence relation (E.4) for P l (ì), multiply both sides by P l (ì), integrate
                        with respect to ì from ÿ1to ‡1, and note that one of the integrals vanishes according
                        to the orthogonality relation (E.18), so that
                                        … 1                  … 1
                                                 2     2l ÿ 1
                                           [P l (ì)] dì ˆ       ìP l (ì)P lÿ1 (ì)dì
                                         ÿ1               l   ÿ1
                        Replacing l by l ‡ 1 in equation (E.4), we can substitute for ìP l (ì) on the right-hand
                        side. Again applying equation (E.18), we ®nd that
                                           1             2l ÿ 1  1
                                          …                    …
                                                   2                     2
                                             [P l (ì)] dì ˆ       [P lÿ1 (ì)] dì
                                           ÿ1            2l ‡ 1  ÿ1
                        This relationship can then be applied successively to obtain
                                  1                            1
                                 …                            …
                                          2     (2l ÿ 1)(2l ÿ 3)  [P lÿ2 (ì)] dì
                                                                         2
                                    [P l (ì)] dì ˆ
                                  ÿ1            (2l ‡ 1)(2l ÿ 1)  ÿ1
                                               . . .
                                                   (2l ÿ 1)(2l ÿ 3)     1  … 1    2
                                              ˆ                             [P 0 (ì)] dì
                                                (2l ‡ 1)(2l ÿ 1)(2l ÿ 3)     3  ÿ1
                                                      … 1
                                                  1            2
                                              ˆ          [P 0 (ì)] dì
                                                2l ‡ 1  ÿ1
                        Since P 0 (1) ˆ 1, the desired result is
                                           1                    1
                                          …                    …
                                                   2       1             2
                                             [P l (ì)] dì ˆ       dì ˆ                    (E:19)
                                           ÿ1            2l ‡ 1  ÿ1    2l ‡ 1
                          We are now ready to evaluate I lm . From equation (E.10) we have
                                                                                     !
                                                                        m
                                   …                 2     …
                                    1           m           1         d P l d  d mÿ1
                                                                                    P l
                                                                   2 m
                                           2 m
                             I lm ˆ  (1 ÿ ì )  d P l  dì ˆ    (1 ÿ ì )   m        mÿ1  dì
                                                  m
                                   ÿ1          dì           ÿ1         dì  dì   dì
                        Integration by parts gives
                                                      1  … 1  mÿ1               m
                                          m
                                               mÿ1
                                         d P l d  P l       d   P l d       2 m  d P l
                                      2 m
                           I lm ˆ (1 ÿ ì )             ÿ              (1 ÿ ì )       dì   (E:20)
                                         dì m  dì  mÿ1      dì mÿ1  dì         dì m
                                                    ÿ1    ÿ1
                                                            2
                        The integrated part vanishes because (1 ÿ ì ) ˆ 0at ì ˆÐ 1.
                          To evaluate the integral on the right-hand side of equation (E.20), we replace m by
                                                        2 mÿ1
                        m ÿ 1 in (E.16) and multiply by (1 ÿ ì )  to obtain
                                  2                     dw mÿ1
                                 d w mÿ1
                                                   2 mÿ1
                             2 m
                        (1 ÿ ì )       ÿ 2mì(1 ÿ ì )
                                  dì 2                   dì
                                                                                  2 mÿ1
                                                        ‡ [l(l ‡ 1) ÿ m(m ÿ 1)](1 ÿ ì )  w mÿ1 ˆ 0
                        which can be rewritten as

                               d        2 m  dw mÿ1                        2 mÿ1
                                  (1 ÿ ì )        ˆÿ(l ‡ m)(l ÿ m ‡ 1)(1 ÿ ì )  w mÿ1 ˆ 0
                               dì            dì
                        From equation (E.14) we see that
   311   312   313   314   315   316   317   318   319   320   321