Page 181 - Phase Space Optics Fundamentals and Applications
P. 181

162   Chapter Four



          Acknowledgments
               The authors would like to express their gratitude to P. Andr´es, S.
               Granieri,E.Sicre, and E. Silvestre fortheircontributions intheresearch
               revisited in this chapter. They also acknowledge financial support of
               Ministerio de Ciencia y Tecnolog´ıa, Spain (Grants DPI 2006-8309 and
               DPI 2008-02953).



          References
                1. J. C. Wood and D. T. Barry, “Radon transformation of time-frequency distri-
                  butions for analysis of multicomponent signals,” Proc. Int. Conf. Acoust. Speech
                  Signal Process. 4: 257–261 (1992).
                2. J. C. Wood and D. T. Barry, “Linear signal synthesis using the Radon-Wigner
                  transform,” IEEE Trans. Signal Process. 42: 2105–2111 (1994).
                3. L.Cohen,Time-FrequencyAnalysis,Prentice-Hall,UpperSaddleRiver,N.J.,1995.
                4. D. Mendlovic, R. G. Dorsch, A. W. Lohmann, Z. Zalevsky, and C. Ferreira, “Op-
                  tical illustration of a varied fractional Fourier-transform order and the Radon-
                  Wigner display,” Appl. Opt. 35: 3925–3929 (1996).
                5. A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier
                  transform,” J. Opt. Soc. Am. A 10: 2181–2186 (1993).
                6. S. Granieri, W. D. Furlan, G. Saavedra, and P. Andr´es, “Radon-Wigner display:
                  A compact optical implementation with a single varifocal lens,” Appl. Opt. 36:
                  8363–8369 (1997).
                7. P. Pellat-Finet, “Fresnel diffraction and the fractional-order Fourier transform,”
                  Opt. Lett. 19: 1388–1390 (1994).
                8. P. Andr´es, W. D. Furlan, G. Saavedra, and A. W. Lohmann, “Variable fractional
                  Fourier processor: A simple implementation,” J. Opt. Soc. Am. A 14: 853–858
                  (1997).
                9. E. Tajahuerce, G. Saavedra, W. D. Furlan, E. E. Sicre, and P. Andr´es, “White-
                  light optical implementation of the fractional fourier transform with adjustable
                  order control,” Appl. Opt. 39: 238–245 (2000).
               10. Y. Zhang, B. Gu, B. Dong, and G. Yang, “Optical implementations of the Radon-
                  Wigner display for one-dimensional signals,” Opt. Lett. 23: 1126–1128 (1998).
                11. Y. Zhang, B.-Y. Gu, B.-Z. Dong, and G.-Z. Yang, “New optical configurations for
                  implementing Radon-Wigner display: Matrix analysis approach,” Opt. Comm.
                  160: 292–300 (1999).
               12. H. H. Hopkins and M. J. Yzuel, “The computation of diffraction patterns in the
                  presence of aberrations,” Optica Acta 17: 157–182 (1970).
               13. M. J. Yzuel and F. Calvo, “Point-spread function calculation for optical systems
                  with residual aberrations and non-uniform transmission pupil,” Optica Acta 30:
                  233–242 (1983).
               14. J. J. Stamnes, B. Spjelkavik, and H. M. Pedersen, “Evaluation of diffraction
                  integrals using local phase and amplitude approximations,” Optica Acta 30:
                  207–222 (1983).
               15. H. G. Kraus, “Finite element area and line integral transforms for generalization
                  of aperture function and geometry in Kirchhoff scalar diffraction theory,” Opt.
                  Eng. 32: 368–383 (1993).
               16. L. A. D’Arcio, J. J. M. Braat, and H. J. Frankena, “Numerical evaluation of
                  diffraction integrals for apertures of complicated shape,” J. Opt. Soc. Am. A 11:
                  2664–2674 (1994).
               17. G. Saavedra, W. D. Furlan, E. Silvestre, and E. Sicre, “Analysis of the irradi-
                  ance along different paths in the image space using the Wigner distribution
                  function,” Opt. Comm. 139: 11–16 (1997).
   176   177   178   179   180   181   182   183   184   185   186