Page 183 - Phase Space Optics Fundamentals and Applications
P. 183

164   Chapter Four


               40. W. D. Furlan, G. Saavedra, and J. Lancis, “Phase-space representations as a tool
                  for the evaluation of the polychromatic OTF,” Opt. Comm. 96: 208–213 (1993).
               41. W. D. Furlan, M. Mart´ınez-Corral, B. Javidi, and G. Saavedra, “Analysis of
                  3-D integral imaging display using the Wigner distribution,” J. Disp. Technol. 2:
                  180–185 (2006).
               42. K. H. Brenner , A. W. Lohmann, and J. Ojeda-Casta˜neda, “The ambiguity func-
                  tion as a polar display of the OTF,” Opt. Comm. 44: 323 (1983).
               43. W. D. Furlan, G. Saavedra, and J. Lancis, “Phase-space representations as a tool
                  for the evaluation of the polychromatic OTF,” Opt. Comm. 96: 208–213 (1993).
               44. J. Besc´os and J. Santamar´ıa, “Formation of color images: Optical transfer func-
                  tions for the tristimulus values,” Photogr. Sci. and Eng. 21: 355–362 (1977).
               45. J. Besc´os, J. H. Altamirano, A. Santisteban, and J. Santamar´ıa, “Digital restora-
                  tion models for color imaging,” Appl. Opt. 27: 419–424 (1988).
               46. R. Barnden, “Calculation of axial polychromatic optical transfer function,” Op-
                  tica Acta 21: 981–1003 (1974).
               47. R. Barnden, “Extra-axial polychromatic optical transfer function,” Optica Acta
                  23: 1–24 (1976).
               48. M. Takeda, “Chromatic aberration matching of the polychromatic optical trans-
                  fer function,” Appl. Opt. 20: 684–687 (1981).
               49. G. Wyszecki and W. S. Stiles, Color Science, Wiley, New York, 1982.
               50. W. D. Furlan, G. Saavedra, E. Silvestre, M. J. Yzuel, and P. Andr´es, “Polychro-
                  matic merit functions in terms of the Wigner distribution function,” Proc. SPIE
                  2730: 252–255 (1996).
               51. W. D. Furlan, G. Saavedra, E. Silvestre, P. Andr´es, and M. J. Yzuel, “Polychro-
                  matic axial behavior of aberrated optical systems: Wigner distribution function
                  approach,” Appl. Opt. 36: 9146–9151 (1997).
               52. P. Andr´es, J. Lancis, E. E. Sicre, and E. Bonet, “Achromatic Fresnel diffraction
                  patterns,” Opt. Comm. 104: 39–45 (1993).
               53. P. Andr´es, J. Lancis, E. Tajahuerce, V. Climent, and G. Saavedra, “White-light
                  optical information processing with achromatic processors,” 1994 OSA Tech.
                  Digest Series 11: 220–223 (1994).
               54. J. Lancis, E. E. Sicre, E. Tajahuerce, and P. Andr´es, “White-light implementation
                  of the Wigner-distribution function with an achromatic processor,” Appl. Opt.
                  34: 8209–8212 (1995).
               55. W. Furlan, D. Zalvidea, and G. Saavedra, “Synthesis of filters for specified axial
                  irradiance by use of phase-space tomography,” Opt. Comm. 189: 15–19 (2001).
               56. A. Vander Lugt, Optical Signal Processing, Wiley, New York, 1992.
               57. J. W. Goodman, Introduction to Fourier Optics, McGraw Hill, New York, 1996.
               58. D. Mendlovic, H. M. Ozaktas, and A. W. Lohmann, “Fractional correlation,”
                  Appl. Opt. 34: 303–309 (1995).
               59. S. Granieri, R. Arizaga, and E. E. Sicre, “Optical correlation based on the frac-
                  tional Fourier transform,” Appl. Opt. 36: 6636–6645 (1997).
               60. S. Granieri, M. Tebaldi, and W. D. Furlan, “Parallel fractional correlation: An
                  optical implementation,” Appl. Opt. 40: 6439–6444 (2001).
   178   179   180   181   182   183   184   185   186   187   188