Page 182 - Phase Space Optics Fundamentals and Applications
P. 182

The Radon-Wigner Transform     163


               18. W. D. Furlan, G. Saavedra, E. Silvestre, and M. Mart´ınez-Corral, “On-axis ir-
                  radiance for spherically aberrated optical systems with obscured rectangular
                  apertures: A study using the Wigner distribution function,” J. Mod. Opt. 45:
                  69–77 (1998).
               19. W. D. Furlan, G. Saavedra, E. Silvestre, J. A. Monsoriu, and J. D. Patrignani,
                  “Assessment of a Wigner-distribution-function-based method to compute the
                  polychromatic axial response given by an aberrated optical system,” Opt. Eng.
                  42: 753–758 (2003).
               20. W.D.Furlan,G.Saavedra,J.A.Monsoriu,andJ.D.Patrignani,“Axialbehaviour
                  of Cantor ring diffractals,” J. Opt. A: Pure Appl. Opt. 5: S361–S364 (2003).
               21. W. D. Furlan, M. Mart´ınez-Corral, B. Javidi, and G. Saavedra, “Analysis of 3-D
                  integral imaging displays using the Wigner distribution,” J. Disp. Technol. 2:
                  180–185 (2006).
               22. P. Andr´es, M. Mart´ınez-Corral, and J. Ojeda-Casta˜neda, “Off-axis focal shift for
                  rotationally nonsymmetric screens,” Opt. Lett. 18: 1290–1292 (1993).
               23. A. Dubra and J. A. Ferrari, “Diffracted field by an arbitrary aperture,” Am. J.
                  Phys. 61: 87–92 (1999).
               24. W. D. Furlan, G. Saavedra, and S Granieri, “Simultaneous display of all the
                  Fresnel diffraction patterns of one-dimensional apertures,” Am. J. Phys. 69: 799
                  (2001).
               25. C. Allain and M. Cloitre, “Optical diffraction on fractals,” Phys. Rev. B33: 3566–
                  3569 (1986).
               26. Y. Sakurada, J. Uozumi, and T. Asakura, “Fresnel diffraction by one-
                  dimensional regular fractals,” Pure Appl. Opt. 1: 29–40 (1992).
               27. T. Alieva and F. Agull´o-L´opez, “Optical wave propagation of fractal fields,”
                  Opt. Comm. 125: 267–274 (1996).
               28. O. Trabocchi, S. Granieri, and W. D. Furlan, “Optical propagation of fractal
                  fields: Experimental analysis in a single display,” J. Mod. Opt. 48: 1247–1253
                  (2001).
               29. M. G. Raymer, M. Beck, and D. F. McAlister, “Complex wave-field reconstruc-
                  tion using phase-space tomography,” Phys. Rev. Lett. 72: 1137–1140 (1994).
               30. D. F. McAlister, M. Beck, L. Clarke, A. Mayer, and M. G. Raymer, “Optical phase
                  retrieval by phase-space tomography and fractional-order Fourier transforms,”
                  Opt. Lett. 20: 1181–1183 (1994).
               31. Y. Li, G. Eichmann, and M. Conner, “Optical Wigner distribution and ambiguity
                  function for complex signals and images,” Opt. Comm. 67: 177–179 (1988).
               32. G. Shabtay, D. Mendlovic, and Z. Zalevsky, “Proposal for optical imple-
                  mentation of the Wigner distribution function,” Appl. Opt. 37: 2142–2144
                  (1998).
               33. R. L. Easton, Jr., A. J. Ticknor, and H. H. Barrett, “Application of the Radon
                  transform to optical production of the Wigner distribution,” Opt. Eng. 23: 738–
                  744 (1984).
               34. W. D. Furlan, C. Soriano, and G. Saavedra, “Opto-digital tomographic recon-
                  struction of the Wigner distribution function of complex fields,” Appl. Opt. 47:
                  E63–E67 (2008).
               35. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging, IEEE
                  Press, New York, 1988.
               36. U. Gopinathan, G. Situ, T. J. Naughton, and J. T. Sheridan, “Noninterferometric
                  phase retrieval using a fractional Fourier system,” J. Opt. Soc. Am. A 25: 108–115
                  (2008).
               37. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propaga-
                  tion, Interference and Diffraction of Light, (7th ed., Cambridge University Press,
                  Cambridge, 1999, Chap. 9.
               38. H. H. Hopkins, “The aberration permissible in optical systems,” Proc. Phys. Soc.
                  B70: 449–470 (1957).
               39. H. Bartelt, J. Ojeda-Casta˜neda, and E. E. Sicre, “Misfocus tolerance seen by
                  simple inspection of the ambiguity function,” Appl. Opt. 23: 2693–2696 (1984).
   177   178   179   180   181   182   183   184   185   186   187