Page 53 - Phase Space Optics Fundamentals and Applications
P. 53

34   Chapter One


               and we need averaging in the x direction. We may thus benefit from a
               rotation of the kernel, or let the original kernel operate on the Wigner
               distribution of the fractional Fourier transform of the signal,

                   C f (x, u) = K(x cos   + u sin  , −x sin   + u cos  ) ∗ ∗W f (x, u)
                                                            x u
                                                                   (1.80a)
                                                     (x, u)        (1.80b)
                               C F    (x, u) = K(x, u) ∗ ∗W F
                                               x u
                 To find the optimal rotation angle   o , we may proceed as follows.

               Let m and m    be the first- and second-order moments of the intensity
                    x     xx
                     2
               |F   (x)| of the fractional Fourier transform F   (x),

                          1                      1
                                                            2
                     m =        xW F    (x, u) dx du =  x |F   (x)| dx  (1.81a)
                      x
                          E                      E

                          1      2                1    2      2

                    m xx  =     x W F    (x, u) dx du =  x |F   (x)| dx  (1.81b)
                          E                       E
               and let m    be the mixed moment
                       xu

                                     1

                               m xu  =     xu W F   (x, u) dx du    (1.81c)
                                     E
               The propagation laws for the first- and second-order moments
               through a rotator read

                         m       cos    sin    m x
                           x  =                                    (1.82a)
                         m   u  − sin    cos    m u

                   m xx  m xu    cos    sin    m xx  m xu  cos    − sin
                   m     m    =  − sin    cos            sin    cos
                     xu   uu                  m xu  m uu
                                                                   (1.82b)
                               /2        /2            /4  1       /2
               Notethatm u = m x ,m uu = m xx ,andm xu = m xx − (m xx +m xx ),and
                                                          2
               that all second-order moments follow directly from the measurement
               of the intensity profiles of only three fractional Fourier transforms:
                                      ¯
                F 0 (x) = f (x), F  /2 (x) = f (x), and F  /4 (x). While the second-order
               moment m    can be expressed as
                        xx
                                                 2
                                       2
                           m   xx  = m xx cos   + m uu sin   + m xu sin 2   (1.83)
                                                          2
               the second-order central moment      = m    −(m ) can be expressed
                                             xx   xx    x
               as
                                2
                                          2
                         xx  =   xx cos   +   uu sin   + (m xu − m x m u ) sin 2   (1.84)
   48   49   50   51   52   53   54   55   56   57   58