Page 9 - Physical chemistry eng
P. 9

viii   CONTENTS

        17 Commuting and Noncommuting                        20 The Hydrogen Atom 465
             Operators and the Surprising                         20.1   Formulating the Schrödinger Equation 465

             Consequences of Entanglement 383                     20.2   Solving the Schrödinger Equation for the
                                                                        Hydrogen Atom 466
             17.1 Commutation Relations 383
                                                                  20.3   Eigenvalues and Eigenfunctions for the
             17.2  The Stern–Gerlach Experiment 385
                                                                        Total Energy 467
             17.3  The Heisenberg Uncertainty Principle 388
                                                                  20.4   The Hydrogen Atom Orbitals 473
             17.4  (Supplemental) The Heisenberg Uncertainty
                                                                  20.5   The Radial Probability Distribution
                  Principle Expressed in Terms of Standard
                                                                        Function 475
                  Deviations 392
                                                                  20.6  The Validity of the Shell Model of
             17.5 (Supplemental) A Thought Experiment Using a
                                                                        an Atom 479
                  Particle in a Three-Dimensional Box 394
             17.6 (Supplemental) Entangled States, Teleportation,
                  and Quantum Computers 396                  21 Many-Electron Atoms 483
                                                                  21.1  Helium: The Smallest Many-Electron Atom 483
        18 A Quantum Mechanical Model for                         21.2  Introducing Electron Spin 485
             the Vibration and Rotation of                        21.3  Wave Functions Must Reflect the
                                                                        Indistinguishability of Electrons 486
             Molecules 405
                                                                  21.4  Using the Variational Method to Solve the
             18.1  The Classical Harmonic Oscillator 405
                                                                        Schrödinger Equation 490
             18.2 Angular Motion and the Classical Rigid Rotor 409
                                                                  21.5  The Hartree–Fock Self-Consistent Field
             18.3  The Quantum Mechanical Harmonic                      Method 491
                  Oscillator 411
                                                                  21.6  Understanding Trends in the Periodic Table
             18.4 Quantum Mechanical Rotation in Two                    from Hartree–Fock Calculations 499
                  Dimensions 416
             18.5 Quantum Mechanical Rotation in Three
                  Dimensions 419                             22 Quantum States for
             18.6 The Quantization of Angular Momentum 421        Many-Electron Atoms and
             18.7 The Spherical Harmonic Functions 423            Atomic Spectroscopy 507
             18.8 Spatial Quantization 425
                                                                  22.1  Good Quantum Numbers, Terms, Levels, and
                                                                        States 507
        19 The Vibrational and Rotational                         22.2  The Energy of a Configuration Depends on Both
             Spectroscopy of Diatomic                                   Orbital and Spin Angular Momentum 509
                                                                  22.3  Spin-Orbit Coupling Breaks Up a Term into
             Molecules 431
                                                                        Levels 516
             19.1 An Introduction to Spectroscopy 431             22.4  The Essentials of Atomic Spectroscopy 517
             19.2  Absorption, Spontaneous Emission, and          22.5  Analytical Techniques Based on Atomic
                  Stimulated Emission 433                               Spectroscopy 519
             19.3  An Introduction to Vibrational Spectroscopy 435  22.6  The Doppler Effect 522
             19.4  The Origin of Selection Rules 438              22.7  The Helium-Neon Laser 523
             19.5  Infrared Absorption Spectroscopy 440           22.8  Laser Isotope Separation 526
             19.6 Rotational Spectroscopy 443                     22.9  Auger Electron and X-Ray Photoelectron
             19.7  (Supplemental) Fourier Transform Infrared            Spectroscopies 527
                  Spectroscopy 449                                22.10 Selective Chemistry of Excited States:
                                                                          3
                                                                                  1
             19.8  (Supplemental) Raman Spectroscopy 451                O( P) and O( D) 530
             19.9  (Supplemental) How Does the Transition Rate    22.11 (Supplemental) Configurations with Paired and
                  between States Depend on Frequency? 453               Unpaired Electron Spins Differ in Energy 531
   4   5   6   7   8   9   10   11   12   13   14