Page 129 - Power Electronic Control in Electrical Systems
P. 129

//SYS21/F:/PEC/REVISES_10-11-01/075065126-CH004.3D ± 117 ± [106±152/47] 17.11.2001 9:54AM







                                                            Power electronic control in electrical systems 117
                                                  1
                      where  V ˆ V l   V m and Y k ˆ  .
                                                  Z k
                        The injected nodal current at node i may be expressed as a function of the currents
                      entering and leaving the node through the q branches connected to the node
                                                           q
                                                          X
                                                      I i ˆ  I k                         (4:16)
                                                          kˆ1
                      where I i is the nodal current at node i and branch k is connected to node i. Also, I k is
                      the current in branch k.
                        Combining equations (4.15) and (4.16) leads to the key equation used in nodal
                      analysis
                                                      q
                                                     X
                                                 I i ˆ  Y k (V l   V m )                 (4:17)
                                                     kˆ1
                      which can also be expressed in matrix form for the case of n nodes
                                       2  3   2                       32    3
                                         I 1    Y 11  Y 12  Y 13      Y 1n  V 1
                                         I 2    Y 21  Y 22  Y 23      Y 2n  V 2
                                       6  7   6                       76    7
                                       6  7   6                       76    7
                                                Y 31  Y 32  Y 33                         (4:18)
                                       6  7   6                       76    7
                                                 .    .    .   .
                                       6  I 3 7 ˆ 6                Y 3n 76  V 3 7
                                       6  . 7  6  .   .    .    .   . 76  . 7
                                         . . 5   .    .    .    .   . . 54  . . 5
                                       4      4
                                         I n    Y n1  Y n2  Y n3      Y nn  V n
                      where i ˆ 1, 2, 3,     n.
                      4.3.2   Numerical example 1
                      The theory presented above is used to determine the nodal matrix equation for the
                      circuit in Figure 4.8. This circuit consists of six branches and four nodes. The
                      branches are numbered 1 to 6 and the nodes are a, b, c and d. All branches
                      have admittance values Y, with the values of the diagonal elements being negative.

























                      Fig. 4.8 Lattice circuit.
   124   125   126   127   128   129   130   131   132   133   134