Page 160 - Practical Control Engineering a Guide for Engineers, Managers, and Practitioners
P. 160

latrices  ••• Hig•er-or•er  Precess ••••Is   135


                Alternatively, a two-dimensional valley-seeking algorithm can be
             easily constructed to find the values of I and ro that minimize the fol-
             lowing quantity


                                                      2
                                  R3             I   1 )
                    (  J<-r3ro)2 +  1J(-r2ro)2 +  1J(-rtro)2 +  1  ro
                    +(  tan-•(~,<»)  + tan- ( ~,<»)+tan-·<~,<»)+ i  +If r   (5-15)
                                    1



             which is equivalent to solving Eq. (4-25) in  Chap. 4 which is repeated
             here:




             or



             or





             or




                For this case, the quantity in Eq. (5-15) is minimized by I=  0.0089
             and/= ro/2tr= 0.00929 Hz.
                A Matlab script to carry out this minimization is

             clear
             close  all
             xO=[l  .001];
             x=fminsearch('ThirdCrit',xO);
             disp('for  Third Order  process  no  back  flow')
             disp( [ •k.c  =  '  mun2str(x(l))  '  fc  =  '  mun2str(x(2))  ] )
             % get  mag  and  angle  at  this  w and  k
             freq=x(2);
             k=X(l);
             R=lO;
             tau=lO;
             w=2*pi*freq;
             yl=k*R/(sqrt(  (tau*w)A2+1  ))A3;  %magnitude  at wand  k
             y2=-atan(tau*w)-atan(tau*w)-atan(tau*w);
   155   156   157   158   159   160   161   162   163   164   165