Page 175 - Practical Control Engineering a Guide for Engineers, Managers, and Practitioners
P. 175

l50  Chapter  Six


                The poles of the transfer function are located at the roots of the
             quadratic in the denominator:




                If  the damping factor {is  less than unity, these poles become com-
             plex conjugates and the solution will contain sinusoidal components
             suggesting underdamped behavior, as in




             where Euler's formula e"+ib =  e"[cos(b) + jsin(b)] can be used to bring
             in the sinusoids.
                Figure 6-6 shows how the roots (or poles) move in the s-plane as
             the damping factor changes from 0.1 to 1.1. For this case, the natural
             frequency was kept constant at 100 Hz. When { = 1.1, the poles are
             both real but when { =  0.1 both poles nearly lie on the imaginary axis.
             When { =  1 the poles are the same and real.

             6·2·3  Frequency Domain
             Letting s =  jro in Eq. (6-5), which gives

                           y(jro)  _     gro;                    (6-6)
                           U(jro) - (jro) + 2{ro" (jro) + ro!
                                      2

                     2.---~--~--~---,.---~--~--~---.
                    1.5   .....  .

                     1        . . . .  ~ .... ·~eee<:>  ~  ~  = 0.1  ... ·:· .... ·:· ....
                                 .   0e.    .    .    .     .
                                 :  0   .   .    .    .     .
                    0.5          :·e··  .............   .  ........  .
                '    0  ···EI:···  ·•···EI· ~=1.1  .....  :  ......  :  ......  :  ..  ··
                t.=    ~  = 1.t:      .                     .
                   -0.5  ....  : ....  ~$  .........  :  ......  :  ......  :  ......  :  ..
                                   00  .
                                 .   0e     .    .    .     .
                    -1   ........  ·:·  ...  ~.00ee: ~=0.1 ...  ·:  ......  :  .....
                                                      .
                                                 .
                                                            .
                                      .
                                            .
                                 .
                   -1.5        0   0.  0   0   ••••••••••••••••  0.  0   ••••••••••••
                                                      I
                                                 I
                                            I
                                 I
                                                            0
                                      I
                    -~2   -1.5   -1   -0.5   0   0.5   1   1.5   2
                                         Real(s)
             F1auRE 8-8  Poles of seconc::k»rder model; ~  =  0.1 to 1.1.
   170   171   172   173   174   175   176   177   178   179   180