Page 329 - Pressure Swing Adsorption
P. 329
306 PRESSURE SWING ADSORPTION
APPENDIX
A
References
1. R. W. Navlor and-P. O. Backer. A/Ch£. J. 1, 95 (1955).
2. K. Haraya, T. Hakuta, K. Obata, Y. Shido, N. Hoh, K. Wakabavashi, and H. Yoshitome, Gas.
Sl?p. and P11df. 1. 3(1987).
J. W. J. Koros, G. K. Fleming, S. M. Jordan, and T. 1-1. Kim, and H. H. Hoehn, Prog, Polvmer The Method of Characteristics
Sci. 13, 339 ( J 988);
4. G. T; Blaisdell and K. Kammermeyer, Chem. Eng. Sci. 28, 1249 (1973). I
5. D. M, Ruthven, Gas Sep. and Puri(. 5, 9 (1991).
i
6. J. Ktirger and D. M. Ruthven, Diffimon m Zeolites and Other Microporous Solids, John Wiley,
New York (1992).
7. R. M. Thorogood, Gas. Sep, and Puri{. 5, 83 0991).
8. R. W. Spillman, Chem. Eng. Progress 85(1), 41 (1989).
9, E. R. Geus, W. J. W, Bakker, P. J. T. Verheijen, M. J. den Exter, J, A. Mouliin. and
H. vnn Bekkum, Ninlh lmemational Zeolite Conference, Montreal, Julv 1992, Proceedings,
Vol. 2, p. 37.l, _R. von Ba\lmsos, J. B. Higgins, and M. M. J. 'freacy, eds., Butterworth,
Stoveham, MA (1993).
The method of charactenstics 1s a mathematical tooi for solving nonlinear,
J,yperbolic, partial differential equations. The range of potential applica-
tions ts large and includes such diverse topics as acoustics, catalyt1c reactors,
fluid mechamcs, sedimentation, traffic flow, and, of course, adsorption.
1
Further details may be found in the text by Rhee et al. and papers by
2
Acnvos, Bustos and Concha,' Dabholkar et ai.,' KJuw1ck; and Herman and
Prigogine. 6
The analysis begms with a general quasilinear partial differentrnl equation
v aw Ow
• (t,z,w)at + G(t,z,w) oz ~H(t,z,w) (A.I)
The restnctions on this equation are that F, G, and Hare specific, contmu-
ousty differentiable funct10ns, such that F 2 + G 2 "'F 0. A mathematical defi-
nition also governs the relation of w to ,ts partial derivatives, viz., the total
ctenvative:
aw (IW
dw = 7ft dt + iJz dz (A.2)
These are two independent equations that can be solved for the partial
307