Page 330 - Pressure Swing Adsorption
P. 330

306   PRESSURE SWING ADSORPTION
                                  APPENDIX
                                       A
 References
 1.  R.  W.  Navlor and-P.  O.  Backer.  A/Ch£. J.  1,  95  (1955).
 2.  K.  Haraya, T.  Hakuta, K. Obata, Y. Shido, N.  Hoh, K.  Wakabavashi, and H.  Yoshitome, Gas.
 Sl?p.  and P11df.  1. 3(1987).
 J.  W.  J. Koros,  G.  K.  Fleming, S.  M.  Jordan, and T. 1-1.  Kim,  and  H.  H.  Hoehn,  Prog,  Polvmer   The Method of Characteristics
 Sci.  13, 339 ( J 988);
 4.  G. T;  Blaisdell  and K.  Kammermeyer,  Chem.  Eng.  Sci. 28,  1249 (1973).   I
 5.  D. M, Ruthven, Gas  Sep.  and Puri(. 5, 9 (1991).
  i
 6.  J.  Ktirger and D. M.  Ruthven, Diffimon m Zeolites and Other Microporous Solids, John Wiley,
 New  York (1992).
 7.  R.  M.  Thorogood, Gas.  Sep,  and Puri{. 5, 83 0991).
 8.  R.  W. Spillman, Chem.  Eng.  Progress  85(1), 41  (1989).
 9,  E.  R.  Geus,  W.  J.  W,  Bakker,  P.  J.  T.  Verheijen,  M.  J.  den  Exter,  J,  A.  Mouliin.  and
 H.  vnn  Bekkum, Ninlh  lmemational Zeolite Conference,  Montreal, Julv  1992,  Proceedings,
 Vol.  2,  p.  37.l, _R.  von  Ba\lmsos,  J.  B.  Higgins,  and  M.  M.  J.  'freacy,  eds.,  Butterworth,
 Stoveham, MA (1993).







          The method  of charactenstics  1s  a  mathematical  tooi  for  solving  nonlinear,
          J,yperbolic,  partial  differential  equations.  The  range  of  potential  applica-
          tions ts  large and  includes such  diverse topics as acoustics, catalyt1c  reactors,
          fluid  mechamcs,  sedimentation,  traffic  flow,  and,  of  course,  adsorption.
                                                            1
          Further  details  may  be  found  in  the  text  by  Rhee  et  al.  and  papers  by
                 2
          Acnvos, Bustos and Concha,' Dabholkar et ai.,'  KJuw1ck; and Herman and
          Prigogine.  6
            The analysis  begms with a general quasilinear partial differentrnl equation
              v        aw             Ow
              • (t,z,w)at + G(t,z,w) oz  ~H(t,z,w)                   (A.I)

          The restnctions on this equation are  that  F, G, and  Hare specific, contmu-
          ousty differentiable funct10ns,  such  that  F  2   +  G  2   "'F  0.  A  mathematical  defi-
          nition  also governs the  relation  of  w  to  ,ts  partial derivatives, viz.,  the total
          ctenvative:
                    aw     (IW
              dw  = 7ft dt  +  iJz  dz                               (A.2)


          These  are  two  independent  equations  that  can  be  solved  for  the  partial

                                        307
   325   326   327   328   329   330   331   332   333   334   335