Page 116 - Process Equipment and Plant Design Principles and Practices by Subhabrata Ray Gargi Das
P. 116

4.7 Design illustration  113




                                X    10:849
                                           ¼ 0:8866ð> 0:8Þ.
                                Y    12:236
                  This gives F T ¼  ¼
                  From heat balance equation (Eq. 2.1)
                                                                 3                        6
                   Q ¼ m h   C p;h   T h;in   T h;out ¼ 10:8472   2:345   10  ð130   50Þ¼ 2:0349   10 W
                                                                           Q
                                                                                    ¼ 40:57 kg s.

                  and mass flow rate of cooling water required m CW ¼ m c ¼
                                                                   C p;w T w;out   T w;in
                  As mentioned in text, we select cooling water as the tube-side fluid and kerosene is the shell-side
               fluid. Henceforth, all properties pertaining to cooling water will be denoted by subscript ‘t’ and those
               referring to kerosene will be subscripted by ‘s’.
                  From Table 2.5, we assume U D ¼ 700  W  (closer to the higher value to arrive at a compact
                                                   m K
                                                    2
               exchanger with a smaller heat exchange area).
                  Using Eq. (2.7), we obtain heat transfer area, i.e., effective tube outside area A o as
                                           Q               2:0349   10 6         2
                                                                         ¼ 77:31 m
                              A o ¼                   ¼
                                  F T U D DT LMTD;counterflow  0:89   700   42:25
                  From point 6 in Section 4.4, we adopt D 0 ¼ 25:4 mm and tube length ¼ 6 m arranged in a
                                      0
               triangular pitch of layout 60 with P T ¼ 1:25D 0 ¼ 31:75 mm ¼ 0.03175 m.
                  From Table 4.5, we select BWG number ¼ 10 which gives wall thickness ¼ 3.4 mm, tube inner
                                                                     2
               diameter D i ¼ 18:59 mm ¼ 0:01859 m and A i ¼ 2:714   10  4  m .
                  Assuming two tube passes with fixed tube sheet (TEMA AJW), we adopt TS ¼ 50 mm as a first
               guess and estimate the effective tube length L e from Eq. 4.31(a) as
                                       L e ¼ L   2   TS ¼ 6  ð2   0:05Þ¼ 5:9m
                  This gives shell inner diameter D s from Eq. (4.6) for CL ¼ 0:87 and CTP ¼ 0:9 (from Table 4.7).

                                                        s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                               s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                    CL   A o P t          0:87   77:31  ð0:03175Þ
                                            2                                  2
                      D s ¼ 0:637                ¼ 0:637                        ¼ 0:4516 m
                                  CTP   D o   L e            0:9   0:0254   5:9
                  Referring to Table 4.8b, the next higher shell diameter is D s ¼ 489 mm ¼ 0.489 m and the cor-
               responding number of tubes N t ¼ 152.
                  r Number of tubes per pass ¼ 152/2 ¼ 76, and
                                             4               2
                  Flow area per pass ¼ 2:714   10    76 ¼ 0:0206 m
                  This gives cooling water flow velocity (inside tubes)
                           m CW           40:57
                                                    ¼ 1:985 m s (lies between 0.9 and 2.4 m/s, so Ok).
                  u t ¼             ¼
                      r CW    A i;per pass  992:22   0:0206
                                                           2
                  Considering the operating pressure to be 6 kg/cm (higher of the two operating pressures), the
                                                     2
               design pressure p design ¼ 1:3   6 ¼ 7:8kg cm and from Eq. (4.32),
                                                              p ffiffiffiffiffiffiffi
                                                               7:8

                                                                  ¼ 23:425 mm
                                          p ffiffiffiffiffiffiffiffiffiffiffiffiffi  489
                                  TS ¼ D s p design =58:3 ¼
                                                           58:3
                  Since D s < 500 mm, TS is higher of D s =10 ¼ 49mm or the value calculated from Eq. (4.32).
               Accordingly, our initial guess of TS ¼ 50 mm is Ok.
   111   112   113   114   115   116   117   118   119   120   121