Page 129 - Schaum's Outline of Theory and Problems of Electric Circuits
P. 129

WAVEFORMS AND SIGNALS
               118
                                                              1                                 [CHAP. 6
                                   hcos ð2 f 1 t þ   1 Þ cos ð2 f 2 t þ   2 Þi ¼  hcos ½2 ð f 1 þ f 2 Þt þð  1 þ   2 ފi
                                                              2
                                                               1
                                                             þ hcos ½2 ð f 1   f 2 Þt þð  1     2 ފi ¼ 0
                                                               2
                                                     q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                               2   1  2   2           1  2    2
                     Therefore, V eff ¼ ðV 1 þ V 2 Þ and V eff ¼  ðV þ V Þ:
                                   2                  2  1    2
               6.7   The signal vðtÞ in Fig. 6-16 is sinusoidal.  Find its period and frequency.  Express it in the form
                     vðtÞ¼ A þ B cos ð!t þ  Þ and find its average and rms values.
























                                                        Fig. 6-16


                         The time between two positive peaks, T ¼ 20 s, is one period corresponding to a frequency f ¼ 0:05 Hz.
                     The signal is a cosine function with amplitude B added to a constant value A.
                                                     1
                                       1
                                    B ¼ ðV max   V min Þ¼ ð8 þ 4Þ¼ 6  A ¼ V max   B ¼ V min þ B ¼ 2
                                       2             2
                     The cosine is shifted by 2 s to the right, which corresponds to a phase lag of ð2=20Þ3608 ¼ 368. Therefore,
                     the signal is expressed by

                                                    vðtÞ¼ 2 þ 6 cos  t   368
                                                                 10
                     The average and effective values are found from A and B:
                                                                                      p ffiffiffiffiffi
                                                                 2
                                                             2
                                                       2
                                              2
                                                   2
                              V avg ¼ A ¼ 2;  V eff ¼ A þ B =2 ¼ 2 þ 6 =2 ¼ 22  or  V eff ¼  22 ¼ 4:69
               6.8   Let v 1 ¼ cos 200 t and v 2 ¼ cos 202 t. Show that v ¼ v 1 þ v 2 is periodic. Find its period, V max ,
                     and the times when v attains its maximum value.
                         The periods of v 1 and v 2 are T 1 ¼ 1=100 s and T 2 ¼ 1=101 s, respectively. The period of v ¼ v 1 þ v 2 is
                     the smallest common multiple of T 1 and T 2 , which is T ¼ 100T 1 ¼ 101T 2 ¼ 1 s. The maximum of v occurs
                     at t ¼ k with k an integer when v 1 and v 2 are at their maxima and V max ¼ 2.


               6.9   Convert vðtÞ¼ 3 cos 100t þ 4 sin 100t to A sinð100t þ  Þ.
                                   p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi          p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                2
                                                                    2
                                     2
                                         2
                         Note that 3= 3 þ 4 ¼ 3=5 ¼ sin 36:878 and 4= 3 þ 4 ¼ 4=5 ¼ cos 36:878.  Then,
                                    vðtÞ¼ 3 cos 100t þ 4 sin 100t ¼ 5ð0:6 cos 100t þ 0:8 sin 100tÞ
                                       ¼ 5ðsin 36:878 cos 100t þ cos 36:878 sin 100tÞ¼ 5 sinð100t þ 36:878Þ
   124   125   126   127   128   129   130   131   132   133   134