Page 130 - Schaum's Outline of Theory and Problems of Electric Circuits
P. 130

WAVEFORMS AND SIGNALS
               CHAP. 6]
               6.10  Find the average and effective value of v 2 ðtÞ in Fig. 6-1(b) for V 1 ¼ 2, V 2 ¼ 1, T ¼ 4T 1 .  119

                                            V 1 T 1   V 2 ðT   T 1 Þ  V 1   3V 2
                                     V 2;avg ¼             ¼         ¼ 0:25
                                                   T            4
                                              2     2                         p ffiffiffi
                                       2    V 1 T 1 þ V 2 ðT   T 1 Þ  7
                                      V 2;eff ¼             ¼     or    V 2;eff ¼  7=2 ¼ 1:32
                                                   T          4
               6.11  Find V 3;avg and V 3;eff in Fig. 6-1(c) for T ¼ 100T 1 .
                                                                                                   2
                                                                                  2
                         From Fig. 6-1(c), V 3;avg ¼ 0. To find V 3;eff , observe that the integral of v 3 over one period is V 0 T 1 =2.
                                  2
                     The average of v 3 over T ¼ 100T 1 is therefore
                                                                                p ffiffiffi
                                              2
                                        2
                                                          2
                                 2
                               hv 3 ðtÞi ¼ V 3;eff ¼ V 0 T 1 =200T 1 ¼ V 0 =200  or  V 3;eff ¼ V 0 2=20 ¼ 0:0707V 0
                                                                     p ffiffiffiffiffiffiffiffiffiffiffiffi
                     The effective value of the tone burst is reduced by the factor  T=T 1 ¼ 10.
               6.12  Referring to Fig. 6-1(d), let T ¼ 6 and let the areas under the positive and negative sections of
                     v 4 ðtÞ be þ5 and  3, respectively.  Find the average and effective values of v 4 ðtÞ.
                                                     V 4;avg ¼ð5   3Þ=6 ¼ 1=3
                         The effective value cannot be determined from the given data.


               6.13  Find the average and effective value of the half-rectified cosine wave v 1 ðtÞ shown in Fig. 6-17(a).
                                                  ð
                                                   T=4                      T=4
                                               V m       2 t    V m T   2 t      V m
                                        V 1;avg ¼     cos   dt ¼      sin      ¼
                                               T    T=4   T     2 T      T   T=4
                                                  ð                 ð
                                                2  T=4            2  T=4
                                          2    V m       2  2 t  V m           4 t
                                         V 1;eff ¼    cos    dt ¼        1 þ cos   dt
                                               T    T=4    T     2T   T=4       T

                                                2             T=4    2            2
                                               V m    T    4 t      V m  T  T   V m
                                             ¼     t þ  sin       ¼      þ    ¼
                                               2T     4    T        2T  4  4     4
                                                               T=4
                     from which V 1;eff ¼ V m =2.
               6.14  Find the average and effective value of the full-rectified cosine wave v 2 ðtÞ¼ V m j cos 2 t=Tj shown
                     in Fig. 6-17(b).














                                                        Fig. 6-17

                         Use the results of Problems 6.3 and 6.13 to find V 2;avg .  Thus,
                               v 2 ðtÞ¼ v 1 ðtÞþ v 1 ðt   T=2Þ  and  V 2;avg ¼ V 1;avg þ V 1;avg ¼ 2V 1;avg ¼ 2V m =
                         Use the results of Problems 6.5 and 6.13 to find V 2;eff .  And so,
                                                                                      p ffiffiffi
                                       2
                                             2
                                                                 2
                                                          2
                                                   2
                                     V 2;eff ¼ V 1;eff þ V 1;eff ¼ 2V 1;eff ¼ V m =2  or  V 2;eff ¼ V m = 2
   125   126   127   128   129   130   131   132   133   134   135