Page 128 - Schaum's Outline of Theory and Problems of Electric Circuits
P. 128

WAVEFORMS AND SIGNALS
                                                                                                     117
               CHAP. 6]
                     (b) Since phase angles   1 and   2 are equal, the time delays   1 and   2 may not be distinguished from each
                         other based on the corresponding phase angles   1 and   2 .  For unambiguous determination of the
                         distance, k and   are both needed.



               6.3   Show that if periods T 1 and T 2 of two periodic functions v 1 ðtÞ and v 2 ðtÞ have a common multiple,
                     the sum of the two functions, vðtÞ¼ v 1 ðtÞþ v 2 ðtÞ, is periodic with a period equal to the smallest
                     common multiple of T 1 and T 2 . In such case show that V avg ¼ V 1;avg þ V 2;avg .
                         If two integers n 1 and n 2 can be found such that T ¼ n 1 T 1 ¼ n 2 T 2 , then v 1 ðtÞ¼ v 1 ðt þ n 1 T 1 Þ and
                     v 2 ðtÞ¼ v 2 ðt þ n 2 T 2 Þ.  Consequently,
                                          vðt þ TÞ¼ v 1 ðt þ TÞþ v 2 ðt þ TÞ¼ v 1 ðtÞþ v 2 ðtÞ¼ vðtÞ

                     and vðtÞ is periodic with period T.
                         The average is
                                         ð                 ð           ð
                                       1  T              1  T        1  T
                                 V avg ¼   ½v 1 ðtÞþ v 2 ðtފ dt ¼  v 1 ðtÞ dt þ  v 2 ðtÞ dt ¼ V 1;avg þ V 2;avg
                                       T  0              T  0        T  0



                                              2
               6.4   Show that the average of cos ð!t þ  Þ is 1/2.
                                                     1
                                            2
                         Using the identity cos ð!t þ  Þ¼ ½1 þ cos 2ð!t þ  ފ, the notation h f i¼ F avg , and the result of
                                                     2
                     Problem 6.3, we have
                                               h1 þ cos 2ð!t þ  Þi ¼ h1iþhcos 2ð!t þ  Þi
                                                     2
                     But hcos 2ð!t þ  Þi ¼ 0. Therefore, hcos ð!t þ  Þi ¼ 1=2.

                                                              2     2   1  2
               6.5   Let vðtÞ¼ V dc þ V ac cos ð!t þ  Þ. Show that V eff  ¼ V þ V ac .
                                                                    dc
                                                                        2
                                              ð T
                                             1
                                         2                        2
                                       V eff ¼   ½V dc þ V ac cos ð!t þ  ފ dt
                                            T  0
                                              ð
                                             1  T
                                                   2
                                                       2
                                                           2
                                           ¼     ½V dc þ V ac cos ð!t þ  Þþ 2V dc V ac cos ð!t þ  ފ dt
                                            T  0
                                              2  1  2
                                           ¼ V dc þ V ac
                                                 2
                     Alternatively, we can write
                                        2    2                       2
                                      V eff ¼hv ðtÞi ¼ h½V dc þ V ac cos ð!t þ  ފ i
                                                     2   2   2
                                                 ¼hV dc þ V ac cos ð!t þ  Þþ 2V dc V ac cos ð!t þ  Þi
                                                    2    2   2
                                                 ¼ V dc þ V ac hcos ð!t þ  Þi þ 2V dc V ac hcos ð!t þ  Þi
                                                    2  1  2
                                                 ¼ V dc þ V ac
                                                       2
               6.6   Let f 1 and f 2 be two different harmonics of f 0 .  Show that the effective value of
                                                              q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                   2
                                                                        2
                     vðtÞ¼ V 1 cosð2 f 1 t þ   1 Þþ V 2 cos ð2 f 2 t þ   2 Þ is  1 ðV þ V Þ.
                                                                2  1    2
                                                  2
                                        2
                                               2
                                                               2
                                                                   2
                                       v ðtÞ¼ V 1 cos ð2 f 1 t þ   1 Þþ V 2 cos ð2 f 2 t þ   2 Þ
                                             þ 2V 1 V 2 cos ð2 f 1 t þ   1 Þ cos ð2 f 2 t þ   2 Þ
                                         2     2      2  2              2  2
                                        V eff ¼hv ðtÞi ¼ V 1 hcos ð2 f 1 t þ   1 Þi þ V 2 hcos ð2 f 2 t þ   2 Þi
                                             þ 2V 1 V 2 hcos ð2 f 1 t þ   1 Þ cos ð2 f 2 t þ   2 Þi
                            2
                                            2
                     But hcos ð2 f 1 t þ   1 Þi ¼ hcos ð2 f 2 t þ   2 Þi ¼ 1=2 (see Problem 6.4) and
   123   124   125   126   127   128   129   130   131   132   133