Page 59 - Schaum's Outline of Theory and Problems of Electric Circuits
P. 59

ANALYSIS METHODS
               48











                                                        Fig. 4-17                               [CHAP. 4

                         KVL and KCL give:
                                                      I 2 ð12Þ¼ I 3 ð6Þ                              ð10Þ
                                                      I 2 ð12Þ¼ I 4 ð12Þ                             ð11Þ
                                                         60 ¼ I 1 ð7Þþ I 2 ð12Þ                      ð12Þ
                                                         I 1 ¼ I 2 þ I 3 þ I 4                       ð13Þ
                     Substituting (10) and (11)in(13),

                                                     I 1 ¼ I 2 þ 2I 2 þ I 2 ¼ 4I 2                   ð14Þ
                     Now (14) is substituted in (12):
                                                      1
                                            60 ¼ I 1 ð7Þþ I 1 ð12Þ¼ 10I 1  or  I 1 ¼ 6A
                                                      4


               4.2   Solve Problem 4.1 by the mesh current method.













                                                        Fig. 4-18

                         Applying KVL to each mesh (see Fig. 4-18) results in

                                                    60 ¼ 7I 1 þ 12ðI 1   I 2 Þ
                                                     0 ¼ 12ðI 2   I 1 Þþ 6ðI 2   I 3 Þ
                                                     0 ¼ 6ðI 3   I 2 Þþ 12I 3
                     Rearranging terms and putting the equations in matrix form,
                                                                2             32   3  2   3
                                                  ¼ 60             19  12    0          60
                                   19I 1   12I 2                                 I 1
                                                                               4
                                   12I 1 þ 18I 2   6I 3 ¼ 0  or  4   12  18   6 5 I 2  5 ¼ 4  0 5
                                         6I 2 þ 18I 3 ¼ 0           0   6   18   I 3     0
                     Using Cramer’s rule to find I 1 ,

                                            60   12  0       19   12  0




                                     I 1 ¼       0  18  6    12  18   6 ¼ 17 280   2880 ¼ 6A



                                            0   6  18       0   6  18
   54   55   56   57   58   59   60   61   62   63   64