Page 61 - Schaum's Outline of Theory and Problems of Electric Circuits
P. 61

ANALYSIS METHODS
               50












                                                        Fig. 4-20                               [CHAP. 4
                                                  2          32   3   2  3
                                                    19  7   7   I 1    60
                                                               4
                                                  4  7  13  7 5 I 2  5 ¼ 4  60 5
                                                     7  7  19   I 3    60
                                                        2          3
                                                         19   7  7
                                                        6          7
                     Thus,                           R ¼ 4  713  7 5 ¼ 2880
                                                          7   7 19

                     Notice that in Problem 4.2, too,   R ¼ 2880, although the elements in the determinant were different.  All
                     valid sets of meshes or loops yield the same numerical value for   R .  The three numerator determinants are

                                              60  7  7



                                      N 1 ¼ 60  13  7 ¼ 4320     N 2 ¼ 8642   N 3 ¼ 4320


                                              60  7  19
                     Consequently,
                                            4320
                                        N 1                     N 2             N 3
                                    I 1 ¼  ¼     ¼ 1:5A     I 2 ¼  ¼ 3A     I 3 ¼  ¼ 1:5A
                                          R  2880                 R               R
                     The current supplied by the 60-V source is the sum of the three loop currents, I 1 þ I 2 þ I 3 ¼ 6A.
               4.7   Write the mesh current matrix equation for the network of Fig. 4-21 by inspection, and solve for
                     the currents.















                                                        Fig. 4-21
                                                 2           32   3  2     3
                                                    7   5   0   I 1     25
                                                 4  5  19   4 5 I 2  5 ¼ 4  25 5
                                                               4
                                                    0   4   6   I 3     50

                     Solving,

                                           25  5   0       7  5   0




                                    I 1 ¼       25  19  4    5  19  4 ¼ð 700Þ  536 ¼ 1:31 A



                                           50  4   6       0  4   6
   56   57   58   59   60   61   62   63   64   65   66