Page 175 - Semiconductor Manufacturing Handbook
P. 175
Geng(SMH)_CH12.qxd 04/04/2005 19:49 Page 12.24
PLASMA ETCHING
12.24 WAFER PROCESSING
43. Oehrlein, G. S., et al., Appl. Phys. Lett. 46, 686 (1985).
44. Coburn, J. W., and H. F. Winters, J. Vac. Sci. Technol. 16, 391 (1979).
45. Gottscho, R. A., and G. R. Scheller, Proceedings of the 6th Symposium. on Plasma Processing,
Electrochemical Society, Pennington, New Jersey, 201 (1987).
46. Ephrath, L. M., and E. J. Petrillo, J. Electrochem. Soc. 126, 1419 (1979).
47. Lehmann, H. W., and R. Widmer, J. Vac. Sci. Technol. 15, 319 (1978).
48. Johnson, D., private information exchange.
49. Pang, S. W., “Surface Damage Induced by Dry Etching,” in: R. J. Shul and S. J. Pearton (eds.), Handbook
of Advanced Plasma Processing Techniques (Springer-Verlag, Berlin, 2000).
50. Ephrath, L. M., and R. S. Bennett, J. Electrochem. Soc. 129, 1822 (1982).
51. Mickkelsen, J. C., Jr., and I. W. Wu, Appl. Phys. Lett. 49, 103 (1986).
52. Watanabe, T., and Y. Yoshida, Solid State Technol. 27-4, 263 (1984).
53. Giapis, K. P., “Fundamentals of Plasma Process-Induced Charging and Damage,” in: R. J. Shul and S. J.
Pearton (eds.), Handbook of Advanced Plasma Processing Techniques (Springer-Verlag, Berlin, 2000).
54. Suzuki, K., et al., U.S. Patent No. 4, 579, 623.
55. Laermer, F., and A. Schilp, U.S. Patent No. 5, 498, 312; F. Laermer and A. Schilp, U.S. Patent No. 5, 501,
893.
56. Lai, S. L., et al., Proc. of SPIE 4979, 43 (2003).
57. Ayón, A. A., J. Electrochem. Soc. 146, 339 (1999).
58. Blauw, M., T. Zijlstra, and E. van der Drift, J. Vac. Sci. Technol. B 19, 2930 (2001).
59. Lai, S. L., et al., Proc. of SPIE 5342, 94 (2003).
60. Gottscho, R. A., C. W. Jurgensen, and D. J. Vitkavage, J. Vac. Sci. Technol. B 10, 2133 (1992).
61. Jurgensen, C. W., A. E. Novembre, and E. S. G. Shaqfeh, Proc. SPIE 94, 1262 (1990).
62. Blauw, M. A., and E. van der Drift, J. Vac. Sci. Technol. B 18, 3453 (2000).
63. Ingram, S. G., J. Appl. Phys. 68, 500 (1990).
64. Arnold, J. C., and H. H. Sawin, J. Appl. Phys. 70, 5314 (1991).
65. Giapis, K. P., et al., Appl. Phys. Lett. 57, 983 (1990).
66. Dushman, S., and J. M. Lafferty, Scientific Foundations of Vacuum Technology (Wiley, New York, 1962), p. 94.
67. Coburn, W., and H. F. Winter, Appl. Phys. Lett. 55, 2730 (1989).
68. Lai, S. L., D. Johnson, and R. J. Westerman, to be published.
69. Nozawa, T., et al., Jpn. J. Appl. Phys. 34, 2107 (1995).
70. Fujiwara, N., T. Maruyama, and M. Yoneda, Jpn. J. Appl. Phys. 34, 2095 (1996).
71. Arnold, J. C., and H. H. Sawin, J. Appl. Phys. 70, 5314 (1991).
72. Hwang, G. S., and K. P. Giapis, J. Vac. Sci. Technol. B 15, 70 (1997).
73. Sato, M., and Y. Arita, J. Vac. Sci. Technol. B 16, 1038 (1998).
74. Donohue, J., et al., U.S. Patent No. 6, 071, 822.
75. Samukawa, S., and T. Mieno, Plasma Sources Sci. Technol. 5, 132 (1996).
76. Hopkins, J., et al., U.S. Patent No. 6, 187, 685.
77. Srinivasan, S., et al., Proceedings of the 9th International Conference on Commercialization of Micro and
Nano Systems, 2004, to be printed.
78. William, R., Modern GaAs Processing Methods (Artech House, Norwood, MA, 1990).
79. Youtesy, C., and I. Adesida, “Plasma Processing of III-V Materials,” in: R. J. Shul and S. J. Pearton (eds.),
Handbook of Advanced Plasma Processing Techniques (Springer-Verlag, Berlin, 2000).
80. Hu, E. L., and R. E. Howard, J. Vac. Sci. Technol. B 2, 85 (1984).
81. Seaward, K. L., et al., J. Appl. Phys. 61, 2358 (1987).
82. Ren, F., et al., J. Vac. Sci. Technol. B 15, 983 (1997).
83. Lee, J., et al., GaAs MANTECH; International Conf. on GaAs Manufacturing Technology, 2000, pp. 13–16.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.

