Page 175 - Semiconductor Manufacturing Handbook
P. 175

Geng(SMH)_CH12.qxd  04/04/2005  19:49  Page 12.24




                                                      PLASMA ETCHING

                   12.24  WAFER PROCESSING

                                43. Oehrlein, G. S., et al., Appl. Phys. Lett. 46, 686 (1985).
                                44. Coburn, J. W., and H. F. Winters, J. Vac. Sci. Technol. 16, 391 (1979).
                                45. Gottscho, R.  A., and G. R. Scheller,  Proceedings of the 6th Symposium. on Plasma Processing,
                                   Electrochemical Society, Pennington, New Jersey, 201 (1987).
                                46. Ephrath, L. M., and E. J. Petrillo, J. Electrochem. Soc. 126, 1419 (1979).
                                47. Lehmann, H. W., and R. Widmer, J. Vac. Sci. Technol. 15, 319 (1978).
                                48. Johnson, D., private information exchange.
                                49. Pang, S. W., “Surface Damage Induced by Dry Etching,” in: R. J. Shul and S. J. Pearton (eds.), Handbook
                                   of Advanced Plasma Processing Techniques (Springer-Verlag, Berlin, 2000).
                                50. Ephrath, L. M., and R. S. Bennett, J. Electrochem. Soc. 129, 1822 (1982).
                                51. Mickkelsen, J. C., Jr., and I. W. Wu, Appl. Phys. Lett. 49, 103 (1986).
                                52. Watanabe, T., and Y. Yoshida, Solid State Technol. 27-4, 263 (1984).
                                53. Giapis, K. P., “Fundamentals of Plasma Process-Induced Charging and Damage,” in: R. J. Shul and S. J.
                                   Pearton (eds.), Handbook of Advanced Plasma Processing Techniques (Springer-Verlag, Berlin, 2000).
                                54. Suzuki, K., et al., U.S. Patent No. 4, 579, 623.
                                55. Laermer, F., and A. Schilp, U.S. Patent No. 5, 498, 312; F. Laermer and A. Schilp, U.S. Patent No. 5, 501,
                                   893.
                                56. Lai, S. L., et al., Proc. of SPIE 4979, 43 (2003).
                                57. Ayón, A. A., J. Electrochem. Soc. 146, 339 (1999).
                                58. Blauw, M., T. Zijlstra, and E. van der Drift, J. Vac. Sci. Technol. B 19, 2930 (2001).
                                59. Lai, S. L., et al., Proc. of SPIE 5342, 94 (2003).
                                60. Gottscho, R. A., C. W. Jurgensen, and D. J. Vitkavage, J. Vac. Sci. Technol. B 10, 2133 (1992).
                                61. Jurgensen, C. W., A. E. Novembre, and E. S. G. Shaqfeh, Proc. SPIE 94, 1262 (1990).
                                62. Blauw, M. A., and E. van der Drift, J. Vac. Sci. Technol. B 18, 3453 (2000).
                                63. Ingram, S. G., J. Appl. Phys. 68, 500 (1990).
                                64. Arnold, J. C., and H. H. Sawin, J. Appl. Phys. 70, 5314 (1991).
                                65. Giapis, K. P., et al., Appl. Phys. Lett. 57, 983 (1990).
                                66. Dushman, S., and J. M. Lafferty, Scientific Foundations of Vacuum Technology (Wiley, New York, 1962), p. 94.
                                67. Coburn, W., and H. F. Winter, Appl. Phys. Lett. 55, 2730 (1989).
                                68. Lai, S. L., D. Johnson, and R. J. Westerman, to be published.
                                69. Nozawa, T., et al., Jpn. J. Appl. Phys. 34, 2107 (1995).
                                70. Fujiwara, N., T. Maruyama, and M. Yoneda, Jpn. J. Appl. Phys. 34, 2095 (1996).
                                71. Arnold, J. C., and H. H. Sawin, J. Appl. Phys. 70, 5314 (1991).
                                72. Hwang, G. S., and K. P. Giapis, J. Vac. Sci. Technol. B 15, 70 (1997).
                                73. Sato, M., and Y. Arita, J. Vac. Sci. Technol. B 16, 1038 (1998).
                                74. Donohue, J., et al., U.S. Patent No. 6, 071, 822.
                                75. Samukawa, S., and T. Mieno, Plasma Sources Sci. Technol. 5, 132 (1996).
                                76. Hopkins, J., et al., U.S. Patent No. 6, 187, 685.
                                77. Srinivasan, S., et al., Proceedings of the 9th International Conference on Commercialization of Micro and
                                   Nano Systems, 2004, to be printed.
                                78. William, R., Modern GaAs Processing Methods (Artech House, Norwood, MA, 1990).
                                79. Youtesy, C., and I. Adesida, “Plasma Processing of III-V Materials,” in: R. J. Shul and S. J. Pearton (eds.),
                                   Handbook of Advanced Plasma Processing Techniques (Springer-Verlag, Berlin, 2000).
                                80. Hu, E. L., and R. E. Howard, J. Vac. Sci. Technol. B 2, 85 (1984).
                                81. Seaward, K. L., et al., J. Appl. Phys. 61, 2358 (1987).
                                82. Ren, F., et al., J. Vac. Sci. Technol. B 15, 983 (1997).
                                83. Lee, J., et al., GaAs MANTECH; International Conf. on GaAs Manufacturing Technology, 2000, pp. 13–16.


                          Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
                                     Copyright © 2004 The McGraw-Hill Companies. All rights reserved.
                                       Any use is subject to the Terms of Use as given at the website.
   170   171   172   173   174   175   176   177   178   179   180