Page 281 - Shigley's Mechanical Engineering Design
P. 281

bud29281_ch05_212-264.qxd  11/27/2009  6:46 pm  Page 256 pinnacle s-171:Desktop Folder:Temp Work:Don't Delete (Jobs):MHDQ196/Budynas:







                 256    Mechanical Engineering Design
                                          Fracture Mechanics
                                                                              √
                                          p. 243                       K I = βσ πa                         (5–37)

                                          where β is found in Figs. 5–25 to 5–30 (pp. 243 to 246)

                                                                             K Ic
                                          p. 247                         n =                               (5–38)
                                                                             K I
                                          where K Ic is found in Table 5–1 (p. 246)

                                          Stochastic Analysis
                                          Mean factor of safety defined as ¯n = μ S /μ σ (μ S and μ σ are mean strength and stress,
                                          respectively)

                                          Normal-Normal Case

                                                                                 2
                                                                                        2
                                                                                          2
                                                                               2
                                                                 1 ±  1 − (1 − z C )(1 − z C )
                                                                                          σ
                                                                                 S
                                          p. 250              ¯ n =                                        (5–42)
                                                                               2
                                                                           1 − z C 2
                                                                                 S
                                          where z can be found in Table A–10, C S =ˆσ S /μ S , and C σ =ˆσ σ /μ σ .
                                          Lognormal-Lognormal Case

                                                                                         .              C n

                                                                          2
                                          p. 251       ¯ n = exp −z ln(1 + C ) + ln 1 + C 2  = exp C n −z +
                                                                          n           n
                                                                                                         2
                                                                                                           (5–45)
                                          where
                                                                              2
                                                                            C + C  2 σ
                                                                              S
                                                                      C n =
                                                                             1 + C 2
                                                                                  σ
                                          (See other definitions in normal-normal case.)
                                          PROBLEMS
                                          Problems marked with an asterisk (*) are linked to problems in other chapters, as summarized in
                                          Table 1–1 of Sec. 1–16, p. 24.
                                   5–1    A ductile hot-rolled steel bar has a minimum yield strength in tension and compression of 350 MPa.
                                          Using the distortion-energy and maximum-shear-stress theories determine the factors of safety
                                          for the following plane stress states:
                                          (a) σ x = 100 MPa, σ y = 100 MPa
                                          (b) σ x = 100 MPa, σ y = 50 MPa
                                          (c) σ x = 100 MPa, τ xy =−75 MPa
                                          (d) σ x =−50 MPa, σ y =−75 MPa, τ xy =−50 MPa
                                          (e) σ x = 100 MPa, σ y = 20 MPa, τ xy =−20 MPa
                                   5–2    Repeat Prob. 5–1 with the following principal stresses obtained from Eq. (3–13):
                                          (a) σ A = 100 MPa, σ B = 100 MPa
                                          (b) σ A = 100 MPa, σ B =−100 MPa
                                          (c) σ A = 100 MPa, σ B = 50 MPa
                                          (d) σ A = 100 MPa, σ B =−50 MPa
                                          (e) σ A =−50 MPa, σ B =−100 MPa
   276   277   278   279   280   281   282   283   284   285   286