Page 94 - Six Sigma for electronics design and manufacturing
P. 94

The Elements of Six Sigma and Their Determination
                                                                                63
                                      Table 2.5   Goodness of fit test case study
                                              2
                                                                   Expected
                                                               P i ,
                                             frequency
                        Original Sorted
                                                                            terms
                        data
                                                               f(z)
                                                      z Terms
                                                                    30 · P i
                                                m i
                               7739
                        8146
                        8956
                                                4
                                                                            0.0067
                                                                     3.84
                                     < 8000
                               7796
                               7797
                        10310
                        9380
                               7922
                               8012
                        8889
                        9534
                               8113
                        8288   data  Boundaries  Observed  –1.135  0.128  frequency  Chi-square
                               8146
                        9326   8149
                        7797   8288  8000–8500  8   –1.135, –0.46 0.1948  5.844  0.795
                        8919   8319
                        8457   8354
                        8113   8457
                        8984   8570
                        7739   8787
                        9858   8889
                        8979   8919  8500–9000  7   –0.46, 0.21  0.2604  7.812  0.084
                        8319   8956
                        9095   8979
                        8149   8984
                        9619   9095
                        8787   9326  9000–-9500  4  0.21, 0.88  0.2274  6.82  1.166
                        7922   9380
                        8012   9450
                        8354   9534
                        7796   9565
                        9450   9619
                        9820   9820  > 9500     7   0.88      0.1894  5.682  0.305
                        8570   9858
                        10170
                        10170  10310
                        Totals                 30             1      30     2.36
                        Average ( ) = 8843.43.
                          = 743.
                        scores (NS) in Figure 2.13, and it can clearly be seen that the line rep-
                        resenting the data versus its normal score equivalent is almost linear.
                        In addition, the expected versus observed frequencies of the data are
                        shown in Figure 2.14. They present a clear adherence to normal curve
                        characteristics.
                        2.4.4  Transformation data into normal distributions
                        In the cases where the normal distribution cannot be made applicable
                        to the data by using either of the two above methods, then the use of dif-
   89   90   91   92   93   94   95   96   97   98   99