Page 240 - Statistics for Environmental Engineers
P. 240

L1592_frame_C27.fm  Page 243  Wednesday, December 26, 2001  11:50 AM







                        Interactions are represented in the model matrix by cross-products. The elements in X 12  are the products
                       of X 1  and X 2  (for example, (−1)(−1) = 1, (1)(−1) = −1, (−1)(1) = −1, (1)(1) = 1, etc.). Similarly, X 13  is
                       X 1  times X 3 . X 23  is X 2  times X 3 . Likewise, X 123  is found by multiplying the elements of X 1 , X 2 , and X 3
                       (or the equivalent, X 12  times X 3 , or X 13  times X 2 ). The order of the X vectors in the model matrix is not
                       important, but the order shown (a column of +1’s, the factors, the two-factor interactions, followed by
                       higher-order interactions) is a standard and convenient form.
                        From the eight response measurements  y 1 ,  y 2 ,…, y 8 , we can form eight statistically independent
                       quantities by multiplying the y vector by each of the X vectors. The reason these eight quantities are
                                                                                    1
                       statistically independent derives from the fact that the X vectors are orthogonal.  The independence of
                       the estimated effects is a consequence of the orthogonal arrangement of the experimental design.
                        This multiplication is done by applying the signs of the X vector to the responses in the y vector and
                       then adding the signed y’s. For example, y multiplied by X 0  gives the sum of the responses: X 0  ⋅ y =
                       y 1  + y 2  +  …  + y 8 . Dividing the quantity X 0  ⋅ y by 8 gives the average response of the whole experiment.
                       Multiplying the y vector by an X i  vector yields the sum of the four differences between the four y’s at
                       the +1 levels and the four y’s at the −1 levels. The effect is estimated by the average of the four differences;
                       that is, the effect of factor X i  is X i  ⋅ y/4.
                        The eight effects and interactions that can be calculated from a full eight-run factorial design are:
                                                                                         y 7 +
                                                                                  y 5 +
                                                                                      y 6 +
                                                                        y 2 +
                                                                           y 3 +
                                                                               y 4 +
                                                                    y 1 +
                                                                                             y 8
                               Average                       X 0 y⋅  =  ----------------------------------------------------------------------------------
                                                                                 8
                               Main effect of factor 1       X 1 y⋅  =  – y 1 +  y 2 –  y 3 +  y 4 –  y 5 +  y 6 –  y 7 +  y 8
                                                                    -------------------------------------------------------------------------------------
                                                                                 4
                                                                           y 6 +
                                                                        y 4 +
                                                                    y 2 +
                                                                   =  -------------------------------------- –  y 1 +  y 3 +  y 5 +  y 7
                                                                               y 8
                                                                                  --------------------------------------
                                                                          4             4
                                                                           y 7 +
                                                                        y 4 +
                                                                    y 3 +
                                                                               y 8
                               Main effect of factor 2       X 2 y⋅  =  -------------------------------------- –  y 1 +  y 2 + y 5 +  y 6
                                                                                  --------------------------------------
                                                                          4             4
                                                                           y 7 +
                                                                        y 6 +
                                                                    y 5 +
                                                                               y 8
                               Main effect of factor 3       X 3 y⋅  =  -------------------------------------- –  y 1 +  y 2 + y 3 +  y 4
                                                                                  --------------------------------------
                                                                          4             4
                                                                        y 4 +
                                                                           y 5 +
                                                                    y 1 +
                                                                               y 8
                               Interaction of factors 1 and 2  X 12 y⋅  =  -------------------------------------- –  y 2 +  y 3 + y 6 +  y 7
                                                                                  --------------------------------------
                                                                          4             4
                                                                           y 6 +
                                                                        y 3 +
                                                                    y 1 +
                                                                               y 8
                               Interaction factors 1 and 3  X 13 y⋅  =  -------------------------------------- –  y 2 +  y 4 +  y 5 +  y 7
                                                                                  --------------------------------------
                                                                          4             4
                                                                        y 2 +
                                                                           y 7 +
                                                                    y 1 +
                                                                               y 8
                               Interaction of factors 2 and 3  X 23 y⋅  =  -------------------------------------- –  y 3 +  y 4 +  y 5 +  y 6
                                                                                  --------------------------------------
                                                                          4             4
                                                                           y 5 +
                                                                        y 3 +
                                                                    y 2 +
                                                                               y 8
                               Interaction of factors 1, 2, and 3  X 123 y⋅  =  -------------------------------------- –  y 1 +  y 4 +  y 6 +  y 7
                                                                                  --------------------------------------
                                                                          4             4
                                                              2
                       If the variance of the individual measurements is σ , the variance of the mean is:
                                                                              1
                                            1
                                            --- [
                                                   ()
                                                                              --- 8σ =
                                   Var y() =    2  Var y 1 +  Var y 2 +  … +  ()] =    2  2  σ 2
                                                           ()
                                                                                       ------
                                            8                     Var y 8   8      8
                       The variance of each main effect and interaction is:
                                              1
                                                                                1
                                              --- [
                                                            ()
                                                    ()
                                 Var effect) =    2  Var y 1 +  Var y 2 +  … +  ()] =    2  2  σ 2
                                    (
                                                                                --- 8σ =
                                                                                         ------
                                              4                    Var y 8    4      2
                       Orthogonal means that the product of any two-column vectors is zero. For example, X 3  ⋅ X 123  = (−1)(−1) + … + (+1)(+1) =
                       1
                       1 − 1 − 1 + 1 + 1 − 1 − 1 + 1 = 0.
                       © 2002 By CRC Press LLC
   235   236   237   238   239   240   241   242   243   244   245