Page 292 - Statistics for Environmental Engineers
P. 292

L1592_frame_C33  Page 298  Tuesday, December 18, 2001  2:51 PM









                                 TABLE 33.1
                                 Example Data and the Sum of Squares Calculations for a One-Parameter Linear
                                 Model and a One-Parameter Nonlinear Model
                                       Linear Model: ηη ηη == == ββ ββx  Nonlinear Model: ηη ηη i  == == exp(−θθ θθx i )
                                                           2                              2
                                  x i  y obs,i  y calc,i  e i  (e i )  x i  y obs,i  y calc,i  e i  (e i )
                                 Trial value: b = 0.115        Trial value: k = 0.32
                                  2  0.150  0.230  −0.080  0.0064  2  0.620  0.527  0.093  0.0086
                                  4  0.461  0.460  0.001  0.0000  4  0.510  0.278  0.232  0.0538
                                  6  0.559  0.690  −0.131  0.0172  6  0.260  0.147  0.113  0.0129
                                 10  1.045  1.150  −0.105  0.0110  10  0.180  0.041  0.139  0.0194
                                 14  1.364  1.610  −0.246  0.0605  14  0.025  0.011  0.014  0.0002
                                 19  1.919  2.185  −0.266  0.0708  19  0.041  0.002  0.039  0.0015
                                            Sum of squares = 0.1659        Sum of squares = 0.0963
                                 Trial value: b = 0.1 (optimal)  Trial value: k = 0.2 (optimal)
                                  2  0.150  0.200  −0.050  0.0025  2  0.620  0.670  −0.050  0.0025
                                  4  0.461  0.400  0.061  0.0037  4  0.510  0.449  0.061  0.0037
                                  6  0.559  0.600  −0.041  0.0017  6  0.260  0.301  −0.041  0.0017
                                 10  1.045  1.000  0.045  0.0020  10  0.180  0.135  0.045  0.0020
                                 14  1.364  1.400  −0.036  0.0013  14  0.025  0.061  −0.036  0.0013
                                 19  1.919  1.900  0.019  0.0004  19  0.041  0.022  0.019  0.0003
                                      Minimum sum of squares = 0.0116  Minimum sum of squares = 0.0115

                                          2                    1.0
                                                   slope =
                                                   0.115

                                         y  1        slope = 0.1  0.5
                                                                       k = 0.2

                                                                   k = 0.32
                                          0                    0.0
                                            0       10      20    0   5   10  15  20
                                                    x                     x
                       FIGURE 33.2  Plots of data to be fitted to linear (left) and nonlinear (right) models and the curves generated from the
                       initial parameter estimates of b = 0.115 and k = 0.32 and the minimum least squares values (b = 0.1 and k = 0.2).

                       The least squares estimate of θ  still satisfies ∂S/∂θ = 0, but the resulting derivative does not have an
                       algebraic solution. The value of θ that minimizes S is found by iterative numerical search.
                       Examples

                           The similarities and differences of linear and nonlinear regression will be shown with side-by-side
                           examples using the data in Table 33.1. Assume there are theoretical reasons why a linear model
                           (η i  = βx i ) fitted to the data in Figure 33.2 should go through the origin, and an exponential decay
                           model (η i  = exp( −θx i )) should have y = 1 at t = 0. The models and their sum of squares functions are:

                                        y i =  βx i +  e i   min S β() =  ( y i βx i ) 2
                                                                       –
                                                                              – (
                                        y i =  exp  – (  θx i ) +  e i  min S θ() = ∑ ( y i –  exp θx i ))  2
                           For the linear model, the sum of squares function expanded in terms of the observed data and
                           the parameter β is:
                                        S β() =  ( 0.15 2β) + ( 0.461 4β) + ( 0.559 6β)  2
                                                                   2
                                                       2
                                                                           –
                                                   –
                                                               –
                                             + ( 1.045 10β–  ) + ( 1.361 14β) + ( 1.919 19β) 2
                                                                       2
                                                          2
                                                                               –
                                                                  –
                       © 2002 By CRC Press LLC
   287   288   289   290   291   292   293   294   295   296   297