Page 288 - Statistics for Environmental Engineers
P. 288

L1592_frame_C32  Page 293  Tuesday, December 18, 2001  2:50 PM











                       References
                       Box, G. E. P., W. G. Hunter, and J. S. Hunter (1978). Statistics for Experimenters: An Introduction to Design,
                           Data Analysis, and Model Building, New York, Wiley Interscience.
                       Box, G. E. P., G. M. Jenkins, and G. C. Reinsel (1994). Time Series Analysis, Forecasting and Control, 3rd
                           ed., Englewood Cliffs, NJ, Prentice-Hall.
                       Cryer, J. D. (1986). Time Series Analysis, Boston, MA, Duxbury Press.
                       Gilbert, R. O. (1987). Statistical Methods for Environmental Pollution Monitoring, New York, Van Nostrand
                           Reinhold.
                       Montgomery, R. H. and J. C. Loftis, Jr. (1987). “Applicability of the t-Test for Detecting Trends in Water
                           Quality Variables,” Water Res. Bull., 23, 653–662.



                       Exercises

                        32.1 Arsenic in Sludge. Below are annual average arsenic concentrations in municipal sewage
                             sludge, measured in units of milligrams (mg) As per kilogram (kg) dry solids. Time runs
                             from left to right, starting with 1979 (9.4 mg/kg) and ending with 2000 (4.8 mg/kg). Calculate
                             the lag 1 autocorrelation coefficient and prepare a scatterplot to explain what this coefficient
                             means.
                                         9.4 9.7 4.9 8.0 7.8 8.0 6.4 5.9 3.7 9.9 4.2
                                         7.0 4.8 3.7 4.3 4.8 4.6 4.5 8.2 6.5 5.8 4.8

                        32.2 Diurnal Variation. The 70 BOD values given below were measured at 2-h intervals (time runs
                             from left to right). (a) Calculate and plot the autocorrelation function. (b) Calculate the
                             approximate 95% confidence interval for the autocorrelation coefficients. (c) If you were to
                             redo this study, what sampling interval would you use?


                             189  118  157  183  138  177  171  119  118  128  132  135  166  113  171  194  166
                             179 177  163  117  126  118  122  169  116  123  163  144  184  174  169  118  122
                             112  121 121  162  189  184  194  174  128  166  139  136  139  129  188  181  181
                             143  132  148  147  136  140  166  197  130  141  112  126  160  154  192  153  150
                             133  150

                        32.3 Effluent TSS. Determine the autocorrelation structure of the effluent total suspended solids
                             (TSS) data in Exercise 3.4.






















                       © 2002 By CRC Press LLC
   283   284   285   286   287   288   289   290   291   292   293