Page 742 - The Mechatronics Handbook
P. 742

0066_Frame_C23  Page 50  Wednesday, January 9, 2002  1:56 PM









                                                              13
                       data was then found with the MATLAB software.  The transfer-function between the applied input
                       voltage V x (t) and the output of the inductive sensor y(t) was found to be
                               Ys()
                       G 1 s() =  -------------
                              V x s()
                                   5.544 ×  10 s –  7.528 ×  10 s + 1.476 ×  10 s –  4.571 ×  10 s +  9.415 ×  10 23
                                                                    15 2
                                                                                 18
                                           5 4
                                                        9 3
                          =  ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                            s +  1.255 ×  10 s +  1.632 ×  10 s + 1.855 × 10 s +  6.5 × 10 s + 6.25 × 10 s +  1.378 ×  10  25
                                                                                        21
                             6
                                                                 13 3
                                                                            17 2
                                        4 5
                                                    9 4
                                                                                               (23.134)
                       with units of V/V. Equation (23.135) was scaled by the inductive sensor gain (30 Å/V) and the transfer-
                       function between the applied voltage V x (t) and the actual displacement of the piezo-tube x p (t) is given by
                               X p s()
                       G 2 s() =  -------------
                               V x s()
                                  1.663 ×  10 s –  2.258 × 10 s +  4.427 ×  10 s –  1.371 ×  10 s + 2.825 ×  10 25
                                          7 4
                                                                    16 2
                                                                                 20
                                                      11 3
                         =  ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                       4 5
                                                   9 4
                                                                13 3
                            6
                                                                                       21
                                                                           17 2
                           s +  1.255 ×  10 s + 1.632 × 10 s + 1.855 × 10 s +  6.5 × 10 s +  6.25 × 10 s + 1.378 ×  10 25
                                                                                               (23.135)
                       with units of Å/V.
                       Time Scaling of a Transfer-Function Model
                       We present below an approach for rescaling time for G 2 (s) from seconds [s] to milliseconds [ms]. We
                       briefly recall the time scaling property of the Laplace transform presented in [1, Chapter 3, section 1.4].
                       Let F(s) be the Laplace transform of f(t), i.e.,
                                                             L
                                                         ft() →  Fs()                          (23.136)
                                                                                                ˆ
                       where L denotes the Laplace transform operator. Now, consider a new time scale defined as  t =  at  ,
                                                             ˆ
                       where a is a constant. The Laplace transform of  f(t) =  f  (at) is given by
                                                            L
                                                                  
                                                               1
                                                                   s
                                                 ft() =  fat() → -----F -- =  F s()            (23.137)
                                                   ˆ
                                                                        ˆ
                                                               a   a 
                       Using relation (23.137), we can reduce the coefficients of G 2 (s) by changing the time units of both the
                       input signal u(t) and output signal y(t) as follows:
                                                          (
                                                                     (
                                                  Y s()  Ys/a)/ a   Ys/a)       s
                                                  ˆ
                                                                              
                                           ˆ
                                           G s() =  -----------  =  ------------------------  =  ---------------- =  G --  (23.138)
                                                          (
                                                                      (
                                                  U s()  Us/a)/ a   Us/a)      a 
                                                  ˆ
                       Therefore, to rescale time for G 2 (s) from seconds [s] to millisecond [ms], we choose  t ˆ =  at =  0.001t
                                              ˆ
                       and the new rescaled transfer  G 2  (s) becomes
                                    s
                         G 2 s() =  
                         ˆ
                                    --
                                    a 
                                G 2
                                      a=0.001
                              =  G 2 1000s)
                                   (
                                                                     1.371 ×
                                                 225.8s +
                                                         4.427 ×
                                                                                 2.825 ×
                                                                            10 s +
                                                                              5
                                               4
                                                                 4 2
                                                      3
                                                                                          7
                                                                                        10
                                                               10 s –
                                         16.63s –
                         ˆ
                         G 2 s() =  --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                       6
                                                                 4 3
                                                    3 4
                                         5
                                 6
                                                                           5 2
                                s + 12.55s + 1.632 × 10 s + 1.855 × 10 s +  6.5 × 10 s +  6.25 × 10 s + 1.378 ×  10 7
                                                                                               (23.139)
                         13
                          The MATLAB command  invfreqs gives real numerator and denominator coefficients of experimentally
                       determined frequency response data.
                      ©2002 CRC Press LLC
   737   738   739   740   741   742   743   744   745   746   747