Page 800 - The Mechatronics Handbook
P. 800

0066_Frame_C24  Page 48  Thursday, January 10, 2002  3:46 PM










                                            r (t)      u(t)                  y(t)
                                                               System
                                              +   -


                                                        T                T
                                                         1                2
                                                               +   +

                                                                   ^
                                                                   x(t)
                                                                 K

                       FIGURE 24.20  Estimated state feedback.

                                  r(t)          r (t)                 u(t)              y(t)
                                          P(s)      +          E(s)
                                                                              System
                                          E(s)                 L(s)
                                                        -
                                                               P(s)
                                                               E(s)


                       FIGURE 24.21  Equivalent control loop.

                       Transfer Function Interpretation for the Single-Input Single-Output Case
                       Consider a SISO plant having transfer function

                                                                       N o s()
                                                          (
                                                 G o s() =  C sIA o ) B =  --------------      (24.275)
                                                                 −1
                                                             –
                                                                      M o s()
                       where M o (s) and N o (s) are polynomials in s.
                         First, a state feedback gain, K, is chosen to obtain a closed loop polynomial F(s), where F(s) = det (sI −
                       A o  + B o K). Next, an observer gain, J, is computed to obtain an observer polynomial E(s) = det (sI − A o  + JC o ).
                         If the observer and the observed state feedback are combined, the resulting control loop can be made
                                                  r
                       equivalent (by a suitable choice of  (t)) to the classical control loop shown in Fig. 24.21.
                         In Fig. 24.21 the polynomials P(s) and L(s) satisfy the Diophantine equation
                                                M o s()Ls() + N o s()Ps() =  Es()Fs()          (24.276)


                         This result says that the set of closed loop poles is the union of the set of observer poles and the set
                       of state feedback poles.

                       References

                        1. Anderson, B.D.O. and Moore, J., Linear optimal Control. Prentice-Hall, Englewood Cliffs, NJ, 1971.
                        2. Anderson, B.D.O. and Moore, J., Optimal Filtering. Prentice-Hall, Englewood Cliffs, NJ, 1979.
                        3. Athans, M. and Falb, P., Optimal Control. McGraw HIll, 1966.
                        4. Dennis Bernstein and Wassim Haddad. LQG control with an  H ∞  performance bound: A Riccati
                          equation approach. IEEE Transactions on Automatic Control, 34(3): L293–305, 1989.
                        5. Bittanti, S., Laub, A.J., and Willems, J.C., The Riccati Equation. Springer Verlag, Berlin, 1996.
                        6. Dorf, R.C. and Bishop, R., Modern Control Systems. Prentice-Hall, Englewood Cliffs, NJ, 1997.


                       ©2002 CRC Press LLC
   795   796   797   798   799   800   801   802   803   804   805