Page 837 - The Mechatronics Handbook
P. 837

066_Frame_C26  Page 22  Wednesday, January 9, 2002  1:59 PM









                         The  th order Padé approximation is defined as follows:

                                                                  k
                                                                     k k
                                                     N h s() = ∑  – (  1) c kh s
                                                            k=0

                                                                 k k
                                                     D h s() = ∑ c k h s
                                                            k=0
                       where coefficients c k ’s are computed from
                                                     ( 2  k)! !
                                                         –
                                                c k =  --------------------------------,  k =  0, 1,…,
                                                         (
                                                    2 !k!   k)!
                                                           –
                       First- and second-order approximations are in the form
                                                       1 hs/2
                                                         –
                                                       -------------------,    =  1
                                              N h s()   1 +  hs/2
                                              ------------- =  
                                              D h s()   ----------------------------------------------,   =
                                                       1 hs/2 +
                                                                   2
                                                                (
                                                                 hs) /12
                                                         –
                                                       1 + hs/2 + (  2      2
                                                                hs) /12
                         Given the problem data {h,  K max ,  N(s),  D(s)}, how do we  find the smallest degree,   , of the Padé
                       approximation, so that ∆ h ≤  d  (or ∆ h /K max ≤ d′ ) for a specified error d, or a specified relative error d¢ ?
                       The answer lies in the following result [7]: for a given degree of approximation   we have
                                                                   2 +1
                                                               ehw
                                                              
                                                             2 ----------   ,  w ≤  4
                                                                             ------
                                                     (
                                                   N h jw)      4         eh
                                              −jhw
                                              e   –  ------------------ ≤ 
                                                   D h jw)                  4
                                                     (
                                                             2,         w ≥  ------
                                                                            eh
                         In light of this result, we can solve the approximation order selection problem by using the following
                       procedure:
                         1. Determine the frequency w x  such that
                                                 K max Njw)  d   for all w ≥
                                                      (
                                                 --------------------------- ≤
                                                             --,
                                                    (
                                                   Djw)      2            w x
                            and initialize   = 1.
                         2. For each   ≥ 1 define
                                                                  4  
                                                              
                                                      w   =  max w x , ------ 
                                                                  eh 
                            and plot the function

                                                                  2 +1
                                                   K max Njw(
                                                 2 --------------------------- )  ehw   ,  for w ≤  4
                                                               ----------
                                                                               ------
                                                      (
                                       Φ   w() : =    Djw)     4            eh
                                                
                                                  K max Njw(  )                   4
                                                 2 --------------------------- ,   for w   ≥  w ≥  ------
                                                      (
                                                   Djw)                           eh
                       ©2002 CRC Press LLC
   832   833   834   835   836   837   838   839   840   841   842