Page 987 - The Mechatronics Handbook
P. 987

0066_frame_Ch33.fm  Page 11  Wednesday, January 9, 2002  8:00 PM









                       LMM in the State of Space
                       The used variables are: x 1 , the rod position; x 2 , the rod velocity; x 3 , the rod acceleration; x 4 , the spool
                       position; and x 5 , the spool velocity.

                                             x ˙ 1 =  x 2 t(),  x ˙ 2 =  x 3 t(),   x ˙ 4 =  x 5 t()

                                             x ˙ 3 =  – w Z x 2 t() 2D Z w Z x 3 t() +  k Z w Z x 4 t()  (33.16)
                                                    2
                                                                           2
                                                          –
                                             x ˙ 5 =  – w V x 4 t() 2D V w V x 5 t() + k V w V ut()
                                                                           2
                                                    2
                                                          –
                       Thus the MM of the axis in state-space form becomes
                                                      x ˙ t() =  Ax t() + bu t()
                                                                                                (33.17)
                                                            T
                                                      y t() =  c x t()
                       where
                                                               
                              0    1       0       0      0            0  
                              0    0       1       0      0            0 
                                                                          
                        A =     0  –  2  –               0      ,   b =     0  ,   c =  ( 1 0000)  (33.18)
                                                                               T
                                  w Z   2D Z w Z   k Z                 
                              0    0       0       0      1            0  
                                                   2                   
                              0    0       0     –  w V  – 2D V w V   k V

                       Controller Design
                                                                           T
                       The characteristic polynomial is obtained from det[sI  − (A C   −  b C r )]  = 0, where A C  and  b C  are the
                       controllable forms of the matrices A and b. If A ≠ A C , the use of transformation matrix T is advisable,
                                                           −1
                                                                                           T
                       in order to obtain A C  and b C .  Thus A C  = TAT , and b C  = Tb.  The matrix F = A C  − b C r  has the form
                                               0          1        ..        0    
                                               0          0        ..        0    
                                         F =     .        .       ..         .              (33.19)
                                                                                  
                                               0          0        ..        1    
                                                                                  
                                              −a 0 –  r 1  −a 1 –  r 2  ..  −a n−1 –  r n
                       The characteristic polynomial of the matrix F is

                                            s +  ( a n−1 +  r n )s n−1  +  … + ( a 1 +  r 2 )s +  ( a 0 +  r 1 )   (33.20)
                                            n
                       The poles chosen for the closed-loop determine the polynomial

                                               s +  p n−1 s n−1  +  p n−2 s  n−2  +  … + p 1 s +  p 0   (33.21)
                                                n
                                                                                           T
                       The polynomials (33.20) and (33.21) are identical; therefore, the coefficients of matrix  r R   are
                                                  r v =  p v−1 –  a v−1 ,  v =  1,…, n

                       If

                                                                T
                                                       A = Ac,  r  =  r R T


                      ©2002 CRC Press LLC
   982   983   984   985   986   987   988   989   990   991   992