Page 320 - Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors
P. 320
290 Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors
Carteciano, L.N., Weinberg, D., M€ uller, U., 1997. Development and analysis of a turbulence
model for buoyant flows. In: 4th World Conference on Experimental Heat Transfer, Fluid
Mechanics and Thermodynamics. Brussels, June 2–6, 1997. vol. 3. Edition ETS, Pisa,
pp. 1339–1347.
Carteciano, L., Gr€ otzbach, G., 2003. Validation of turbulence models for a free hot sodium jet
with different buoyancy flow regimes using the computer code FLUTAN. FZKA 6600.
Forschungszentrum Karlsruhe.
Casey, M., Wintergerste, T., 2000. European Research Community on Flow, Turbulence and
Combustion. Special Interest Group on Quality and Trust in Industrial CFD. ERCOFTAC.
Daly, B.J., Harlow, F.H., 1970. Transport equations in turbulence. Phys. Fluids 18, 2634–2649.
Dol, H.S., Hanjalic, K., Kenjeres, S., 1997. A comparative assessment of the second-moment
differential and algebraic models in turbulent natural convection. Int. J. Heat Fluid Flow
18, 4–14.
Donaldson, C.d.P., 1973. Construction of a dynamic model of the production of atmospheric
turbulence and the dispersal of atmospheric pollutants. In: Haugen, D.A. (Ed.), Workshop
on Micrometeorology. Amer. Met. Society, pp. 313–392.
Duponcheel, M., Bricteux, L., Manconi, M., Winckelmans, G., Bartosiewicz, Y., 2014. Assess-
ment of RANS and improved near-wall modelling for forced convection at low Prandtl
numbers based on LES up to Re τ ¼ 2000. Int. J. Heat Mass Transf. 75, 470–482.
Gibson, M.M., Launder, B.E., 1978. Ground effects on pressure fluctuations in the atmospheric
boundary layer. J. Fluid Mech. 86, 491–511.
Gr€ otzbach, G., Panefresco, C., Carteciano, L.N., Dorr, B., Olbrich, W., 2002. Entwicklung des
Rechenprogramms FLUTAN f€ ur thermo- und fluiddynamische Anwendungen. Programm
Nukleare Sicherheitsforschung, Jahresbericht 2001 Teil 1, FZKA 6741,
Forschungszentrum Karlsruhe. 2002, pp. 404–410.
Gr€ otzbach, G., 2007. Anisotropy and Buoyancy in Nuclear Turbulent Heat Transfer – Critical
Assessment and Needs for Modelling. vol. 7363. Forschungszentrum Karlsruhe, FZKA.
Hanjalic, K., Kenjeres, S., Durst, F., 1996a. Natural convection in partitioned two- dimensional
enclosures at higher Rayleigh numbers. Int. J. Heat Mass Transf. 39 (7), 1407–1427.
Hanjalic, K., Kenjeres, S., Durst, F., 1996b. Natural convection in partitioned two-dimensional
enclosures at high Rayleigh numbers. Int. J. Heat Mass Transf. 39, 1407–1427.
Hanjalic, K., 2002. One-point closure models for buoyancy-driven turbulent flows. Annu. Rev.
Fluid Mech. 34, 321–347.
Hwang, C.B., Lin, C.A., 1999. A low Reynolds number two-equation k e model to predict
thermal field. Int. J. Heat Mass Transf. 42, 3217–3230.
Ince, N., Launder, B., 1989. On the computation of buoyancy-driven turbulent flow in rectan-
gular enclosures. Int. J. Heat Fluid Flow 10, 110–117.
Kawamura, H., Abe, H., Shingai, K., 2000. DNS of turbulence and heat transport in a channel
flow with different Reynolds and Prandtl numbers and boundary conditions. In: 3rd Inter-
national Symposium on Turbulence, Heat and Mass Transfer.
Kays, W.M., 1994. Turbulent Prandtl number – where are we. J Heat Transf. Trans. ASME
116 (2), 284–295.
Kenjeres, S., Hanjalic, K., 2000. Convective rolls and heat transfer in finite-length Rayleigh–
B enard convection: a two-dimensional numerical study. Phys. Rev. E 62 (6), 7987–7998.
Kenjeres, S., Gunarjo, S.B., Hanjalic, K., 2005. Contribution to elliptic relaxation modelling of
turbulent natural and mixed convection. Int. J. Heat Fluid Flow 26 (4), 569–586.
Knebel, J.U., 1993. Experimentelle Untersuchungen in turbulenten Auftriebsstrahlen in Nat-
rium. Dissertation, Universit€ at Karlsruhe, KfK 5175, Kernforschungszentrum Karlsruhe.

