Page 392 - Thermodynamics of Biochemical Reactions
P. 392
392 Index
F chemical equilibrium
energy of formation, 39-43
First law of thermodynamics, internal energy, 19-24 ionic strength, 47
Fractional saturation isomer group thermodynamics, 44-46, 45%46
apparent equilibrium constant determination, 129- 132 reaction Gibbs energy, 36-38
dimers, partial dissociation of tetramers into, 128- 129 thermodynamic tables, biochemical species, 49-55
hemoglobin tetramers, oxygen binding by, 123- 124 phase equilibrium
Fumarase single-ion membrane permeability, 146 ~ 148
catalytic sites, transformed Gibbs energy, 138- 139 two-phase chemical reaction, semipermeable
protein-ligand equilibria, pH levels, 135 - 138 membrane, 144-- 145
Fundamental equations of thermodynamics biochemical reactions at specified pH
aqueous systems, phase equilibrium, 141b 142 apparent equilibrium constant derivation, 64 65, 74 76
double species two-phase systems, 143 pseudoisomer thermodynamics, 68-69
electrical potentials, effects 011 ion molar properties. species and reactants, transformed thermodynamic
148~ 149 properties, 65-66
N, species, two phases, 143 transformed Gibbs, 58-62
single species two-phase systems, 142- 143 biochemical thermodynamics, 2 3
two-phase chemical reaction. semipermeable membrane, chemical reactions, fundamental equations, matrix form.
144~- 145 99 101
two-phase systems, single-ion membrane permeability, equilibrium compositions, biochemical reaction systcms,
145-146 108-110
biochemical reactions internal energy equation, 22-24
matrix equations, 101-102 Legendre transforms, 20
specified pH, 58-62 for thermodynamic potentials, 26--30
chemical reactions, matrix equations, 99- 101 oxidation-reduction reactions, 155- 156
hemoglobin tetramers, oxygen binding by, 122& 124 semigrand ensemble partition function, 180 18 1
internal energy, 21-24 thermodynamic potentials
matrices for, 90 Legendre transforms, 26 -~30
biochemical reaction systems, 101- 102 monatomic ideal gas, 33- 34
chemical equations, 99-101 water reactants, Legendre transform calculations, 107 108
principles of, 19- 20 Gibbs-Helmholtz equation
aqueous systems, chemical equilibrium, 41 -43
ionic strength, 47
G biochemical reactions at specified pH, 62
apparent equilibrium constant derivation, 65
Gaseous reactions pseudoisomer thermodynamics, 69
carbon dioxide equilibrium distribution, gas phase and calorimetry of biochemical reactions, temperature effects,
aqueous solution, 150-- 152 176& 177
chemical equations as matrix equations, 91 -95 Legendre transforms for thermodynamic potentials, 28- 30
Gaussian reduction, linear algebra, 103 Gluconeogenesis, biochemical reactions at specified pH,
Gibbs-Duhem equations transformed reaction Gibbs energies, 82-83
aqueous systems Glycolysis
chemical equilibrium biochcmical reactions at specified pH
phase rule, 43-44 composition calculations, Legendre transform, 11 3 ~ I14
single-ion membrane permeability, chemical reaction, equilibrium conditions, 11 7- 1 19
147 specified reactant calculations, 114-1 17
phase equilibrium, 141 142 transformed reaction Gibbs energies, 81 -82
double species two-phase systems, 143 Gibbs energy changes, 2
N, species, two phases, 143 net reaction calculation, matrix multiplication, 106 - I07
single spccies two-phase systems, 142-143 semigrand ensemble partition function, coenzyme
two-phase chemical reaction, semipermeable concentrations, 184
membrane. 144-145 Grand canonical ensemble partition function
two-phase systems, single-ion membrane permeability, semigrand ensemble partition function and, 180- 18 I
146 single species single-phase systems, thermodynamic
biochemical reactions at specified pH, 70 71 potentials, 31 -32
composition calculations, Legendre transform, 112-114
matrices, 90
fundamental biochemical equations, 101 --lo2 H
fundamental chemical equations. 101
phase rule and, 25 26 Half-reactions
Gibbs energies. See idso Transformed Gibbs energy basic equations, 157-158
aqueous systems hydrogen ion binding at specified pH, 167- 170