Page 46 - Using ANSYS for Finite Element Analysis A Tutorial for Engineers
P. 46

IntroductIon to FInIte element AnAlysIs   •   33

                                                                ∧   ∧
                                 ∧
                                                       ∧
                                      ∧
                              ∧
                         ∧
                                      uL
                                                                2
                                               a L
                      At  x =  Lu =  d x ∴ () = a + () = d x ∴ a =  d x −  d x 1
                                                       2
                                  2
                                             1
                                                2
                                                            1
                                                                  L
                      Substituting values of coefficients:
                                ∧    ∧       ∧ x            ∧ x  ∧ x   ∧  
                                                        ∧
                                                        x
                        u ∧  ∧  +   d x2  − d x1   x ∧  ∧  ∧    −      d x 1  
                                                                             
                                                                         
                                                            2
                      ∴= d x1              =  1 −  d x1  +   d x  = 1
                                   L         L      L      L   L    ∧  
                                                                   2  
                                                                          d x
                               
                                ∧
                        ∧
                        u
                               d
                            N
                      ∴= [] 
                               
                                   ∧ x      x ∧
                                1
                      Where N =−  and N =
                             1
                                         2
                                  L         L
                      Step 3: Define the strain/displacement and stress/strain relationships
                      From the definition of strain, the strain/displacement relationship can be
                      derived as:
                             du ∧     d     ∧         ∧           ∧ 
                                                                           d 1x 
                                              1
                                                                1
                                                  =
                                                                  =−
                        e
                      ∴{} =          [ N 1  N 2 ]  d x       dN 1  dN 2    d x       1  1   1  
                                = 
                                                                           
                                                              
                                                    
                                                 
                                                               ∧
                                              ∧
                               dx     dx     d x      dx  dx     d x     L  L     d ∧ 2x  
                               
                                                 
                                                                 
                                  
                                                                2
                                              2
                                
                                 ∧
                      ∴{} = []Bd
                         e
                                
                                
                      Where e is known as strain–displacement matrix.
                      From Hooke’s law, the stress/strain relationship is: s = E e .
                                                                     x
                                                                x
                      Step 4: Derive the element stiffness matrix and equations
                      To derive the stiffness equation using direct method, we employ equilib-
                      rium condition at each node.
                                                           ∧  ∧ 
                                ∧                         d x2 −    AE   ∧  ∧  
                      At node 1,  f  =− T =−  As  =−  A E e ) =−  AE   d x1   =    d x1 −  d x2 
                                               (
                                 x 1       x      x         L     L        
                                                                
                                ∧      AE   ∧  ∧ 
                      At node 2,  f  ==    d x2 −  
                                   T
                                2 x    L      d x1  
                      In matrix form,
                                ∧               ∧ 
                                                                   
                                        
                               f  x 1   AE 1  − 1  d x 1      ∧()  ∧()   ∧() 
                                                                       
                                                            
                                                       
                                                                 e
                                                                      e
                                                           e
                                   =            ⇒  f   = k    d  
                               f ∧    L   − 1  1     ∧                  
                                2 x            d x 
                                                  2
                      Steps 5 to 7 are same as before.
   41   42   43   44   45   46   47   48   49   50   51