Page 45 - Using ANSYS for Finite Element Analysis A Tutorial for Engineers
P. 45

32  •   Using ansys for finite element analysis
                    Assumptions:

                                                        ∧     ∧
                  •  The bar cannot sustain shear force, that is,  f  1 y  = 0,  f  2 y  = 0.
                  •  Any effect of transverse displacement is ignored.
                  •  Hooke’s law applies, that is, s = E e .
                                                   x
                                              x
                  •  No intermediate applied loads.
                 Two nodes:                        Node 1, Node 2
                 Local nodal displacements:        ∧  ,   ∧   (inch, m, mm)
                                                   d x1  d x2
                 Local nodal forces:               ∧   ∧
                                                   f ,  f  2 x  (lbs., Newton)
                                                     x 1
                 Length                            L (inch, m, mm)
                 Cross-sectional area              A (Sq. inch, Sq. m, Sq. mm)
                 Modulus of elasticity             E (psi, Pa, MPa)


                    The stiffness equation for a single spring element in a local coordinate
                system can be written as:
                              ∧             ∧ 
                             f  x 1   k   11  k   d x 1      ∧     
                                                         ∧
                                                             ∧
                                         12
                                                            
                                =           ⇒  f   = k  d
                              ∧     k 21  k 22    ∧         
                              f
                              2 x          d x 
                                              2
                Step 2: Select a displacement function
                  •  Degree of freedom (DOF) per node = 1
                  •  Number of nodes per element = 2
                  •  Total (DOF) per element = 2 × 1 = 2
                  •  Number of coefficients = 2
                Assume a linear displacement function:

                                         ∧
                                         u = a + ax ∧
                                                2
                                            1
                Write in matrix form.
                                                 a 
                                       ∧     ∧  1
                                       u = 1  x   
                                               
                                          
                                                 a
                                                2 
                       ^                                ∧   ∧
                Express u as a function of nodal displacements ( d x1  ,  d x2  )
                Apply boundary condition:
                   ∧    ∧  ∧    ∧               ∧       ∧
                                u
                                         a
                                  0
                                            0
                At  x = 0 u = d x ∴ () = a + () = d x ∴ a =  d x1
                            1
                                                1
                                          2
                                      1
                                                     1
   40   41   42   43   44   45   46   47   48   49   50