Page 47 - Using ANSYS for Finite Element Analysis A Tutorial for Engineers
P. 47

34  •   Using ansys for finite element analysis
                1.8  examPles of linear fem


                Example 1
                For the structure shown in the figure, determine the nodal displacements,
                the forces in each element, and the reactions.



                                                  2    3
                                      2
                     1     1          2    3   15 kN   4    E   =   210 GPa
                                                                    –4
                           3 m                              A   =   3 × 10  m 2
                                                  4    5
                                      2
                                                  3 m



                       EA
                    k =   thestiffnessofelement
                        L

                    All  elements  of  the  previous  figure  have  the  same  material  and
                dimensions.

                                                       
                                                    EA 1    − 1
                            k  ()  =  k  ()  =  k  ()  =  k  ()  =  k =    
                                   2
                                             4
                                        3
                              1
                                                     L − 1  1 
                                                       
                                            3     1  −  1
                                        *
                                  k =  210 10 * 300    
                                         3000     −1  1 
                                               21
                                         21  − 
                                     k =         * 10 3
                                         −21  21  
                The global stiffness matrix (K)

                                     K =  k + k + k + k  4
                                             2
                                                 3
                                          1
                       21  −21 000   0  0  0  0 0  0  0  0  0  0  0  0  00  0 
                                              0
                         −21  21  000   0  21  − 210 0   0  21  0 − 21 0   0  21  0 0 − 21 
                                                                 
                                   
                    3
                K = 10 *   0  0  000  + 0 − 21  21  0 0 + 0  0  0  0  0  0 +  0  0  00  0 
                                                                 
                         0  0  000   0  0  0  0 0   0 − 210  0  0   0  0  00  0  
                                                                         
                         0  0  000   0  0  0  0 0   0  0  0  0  0   0 0 − 210 0  21 
                                                
                                                             
                                  
   42   43   44   45   46   47   48   49   50   51   52