Page 52 - Using ANSYS for Finite Element Analysis A Tutorial for Engineers
P. 52

IntroductIon to FInIte element AnAlysIs   •   39
                      Where [K] is an 10 × 10 before deleting rows and column to account for
                      the fixed boundary support at nodes 1, 3, and 4.
                      Assemblage of stiffness matrix
                      The stiffness matrix for element is:

                      [k] = tA[B] [D] [B]
                               T
                      Element (1)

                                              m = 4


                                                (1)   j = 5



                                               i = 1


                      For element (1), we have coordinates and x  = 0, y  = 0, x  = 0, y  = 250,
                                                                    m
                                                              i
                                                         i
                                                                          m
                      x  = 250 and y  = 125 because the global axes are set up at node 1, and
                       j         j
                                        A =  1 bh
                                           2
                                           1                   2
                                        A= (250 )(250 )=31250 mm
                                           2
                                          t =5 mm

                      The matrix [B] is given by:

                                           b i  0  b j  0  b m  0  

                                    B [] =  1    0  g i  0  g j  0  g m  
                                         2 A                     
                                             g i  b i  g j  b j  g m  b m  

                                     m
                                  j
                                           −
                      Where:  b =  y −  y =125 250 =−125
                              i
                      b =  y −  y = 250 − = 250
                                       0
                                i
                            m
                        j
                      b =  y −  y =−125  =−125
                                   0
                       m
                            i
                                j
                      g =  x −  x =− 250  =−250
                                  0
                       i
                               j
                           m
                                  00
                      g =  x −  x =−= 0
                           i
                       j
                               m
                                      0
                      g =  x −  x = 250 − = 250
                       m
                               i
                           j
   47   48   49   50   51   52   53   54   55   56   57