Page 54 - Using ANSYS for Finite Element Analysis A Tutorial for Engineers
P. 54

IntroductIon to FInIte element AnAlysIs   •   41
                      The stiffness matrix for element (1) is:


                                      −125  −37 5 .  −875 . 
                                       −75  −250  −43 75 
                                                 .
                                                     −   125 5  0  250  0  − 125  0 
                                    )
                          5
                       k [] = ()(31250 )(3 6923   250  75  0   ×  1     0  − 250  0  0  0  250   
                                 .
                                       0  0   8775.    62500  −   250 − 125  0  250  250  − 125  
                                      −   125 − 37 5  875   
                                                 .
                                            .
                                                  
                                        75  250  − 43 75  
                                                 .
                                   37500  20313  −31250  −21875  −6250   1563 
                                                                 −      −     
                                   20313  67969  −18750  −110938  1563   57031 
                                  −   31250 − 18750  6250  0    − 31250  18750 
                       k [] = 9 2308                                          
                            .
                                  − 21875 − 10938  0     2 21875  21875  − 10938 
                                   − 6250  − 1563  − 31250  21875  37500  − 20313 
                                                                              
                                    1563  − 57031  18750  − 10938 − 20313  67969  
                                               1
                      Element (2)
                              m = 5
                               (2)
                      i = 1             j = 2
                       A =  1 bh
                          2
                         1                   2
                       A= (500 )(125 )=31250 mm
                          2

                      For element (2), we have coordinates x  = 0, y  = 0, x  = 250, y  = 125,
                                                      i
                                                                          m
                                                            i
                                                                  m
                      x  = 250 and y  = 0 because the global axes are set up at node 1, and
                       j         j
                      b =  y −  y =−125
                               m
                       i
                           j
                      b = y −  y = 125
                           m
                        j
                               i
                      b =  y −  y = 0
                           i
                       m
                               j
                      g = x −  x =−250
                       i
                               j
                          m
                      g = x −  x =−250
                           i
                       j
                              m
                      g = x −  x = 500
                       m
                           j
                               i
   49   50   51   52   53   54   55   56   57   58   59