Page 227 - Acquisition and Processing of Marine Seismic Data
P. 227

218                          4. FUNDAMENTALS OF DATA PROCESSING










































           FIG. 4.5  Approximation to a box-car function using Fourier series expansion. (A) The box-car function given by Eq. (4.8),
           and its Fourier series expansion for (B) 1 term (n ¼ 1), (C) first 2 terms (n ¼ 2), (D) first 6 terms (n ¼ 6), and (E) first 10 terms
           (n ¼ 10) of Eq. (4.10). DC component, a 0 for n ¼ 0, is 1/2.

                          8
                            0    π < t   π=2            Substituting Eq. (4.9) into Eq. (4.6), we get.
                          <
                     ftðÞ ¼  1   π=2 < t   π=2    (4.8)
                            0
                          :      π=2 < t   π                  1  2         cos 3tðÞ  cos 5tðÞ  cos 7tðÞ
                                                        ftðÞ ¼ +    cos tðÞ       +
                                                              2  π            3        5       7
           The period of this function is 2π and its angular

           frequency   is  ω ¼ 2π/T ¼ 2π/2π ¼ 1.  Since                +  cos 9tðÞ  ⋯         (4.10)
           f( t) ¼ f(t),  box-car  is  an  even  function                  9
           (Fig. 4.5A), and therefore, all b n coefficients are  Eq. (4.10) is actually an approximation to the
           zero. Using Eq. (4.7), a 0 and a n can be obtained as  periodic box-car function given in Eq. (4.8) by
            a 0 ¼ 1=2                                   summing infinite number of sinusoids with dif-
                          8
                               0          n even        ferent phase, amplitude and frequency values.

                2     π   <      k
                              ð
            a n ¼  sin n  ¼  2  1Þ                      In practice, the more terms are included in the
               nπ     2   :         n ¼ 2k +1, k ¼ 0,1,2,…
                            π 2k +1Þ                    summation (i.e., the higher the maximum n
                             ð
                                                  (4.9)  value is incorporated), the closer the result to
   222   223   224   225   226   227   228   229   230   231   232