Page 120 - Advanced Organic Chemistry Part A - Structure and Mechanisms, 5th ed (2007) - Carey _ Sundberg
P. 120

the atoms of a molecule by condensed Fukui functions. These calculations must use    99
          a scheme, such as Mulliken population analysis (see Section 1.4.1) for dividing the
          electron density among the atoms. The condensed Fukui functions identify regions of  TOPIC 1.5
          space that are electron-rich  f   and electron-poor  f  . 160  Reactivity at individual  Application of Density
                                                       +
                                    −
                                                                                       Functional Theory
          atoms can also be expressed as local softness, which is the product of the Fukui  to Chemical Properties
          function and global softness S. 161  As with the Fukui function, these are defined for  and Reactivity
          electrophilic, nucleophilic, and radical reactants.
                                      −
                                     s =     N   −   N−1  	S               (1.45)
                                      +
                                     s =     N+1  −  	S                    (1.46)
                                                   N
          and


                                   s = ½    N+1   −   N−1  	S              (1.47)
              The idea that frontier orbitals control reactivity introduced in the context of MO
          theory has an equivalent in DFT. The electron density distribution should have regions
          of differing susceptibility to approach by nucleophiles and electrophiles. Reactivity
          should correspond to the ease of distortion of electron density by approaching reagents.
          This response to changes in electron distribution is expressed in terms of the Fukui
          function, which describes the ease of displacement of electron density in response to
          a shift in the external field. Since the electron distribution should respond differently
          to interaction with electron acceptors (electrophiles) or electron donors (nucleophiles),
          there should be separate f  +  and f  −  functions. Reaction is most likely to occur at
                                                        +
          locations where there is the best match (overlap) of the f function of the electrophile
          and the f  −  function of the nucleophile. 162  For example, the f  +  and f  −  functions
          for formaldehyde have been calculated and are shown in Figure 1.45. 163  The f  +
          function, describing interaction with a nucleophile, has a shape similar to the   MO.
                                                                           ∗
          It has a higher concentration on carbon than on oxygen and the maximum value is
          perpendicular to the molecular plane. The f function is similar in distribution to the
                                              −
          nonbonding  n  electron pairs of oxygen. This treatment, then, leads to predictions
          about the reactivity toward nucleophiles and electrophiles that are parallel to those
          developed from MO theory (see p. 45). A distinction to be made is that in the MO
          formulation the result arises on the basis of a particular orbital combination—the
          HOMO and LUMO. The DFT formulation, in contrast, comes from the total electron
          density. Methods are now being developed to compute Fukui functions and other
          descriptors of reactivity derived from total electron density.
              DFT can evaluate properties and mutual reactivity from the electron distribution.
          These relationships between qualitative concepts in chemistry, such as electronega-
          tivity and polarizability, suggest that DFT does incorporate fundamental relationships
          between molecular properties and structure. At this point, we want to emphasize
          the conceptual relationships between the electron density and electronegativity and
          polarizability. We can expect electrophiles to attack positions with relatively high
          electron density and polarizability. Nucleophiles should attack positions of relatively

          160
             Y. Li and J. N. S. Evans, J. Am. Chem. Soc., 117, 7756 (1995).
          161   W. Yang and W. J. Mortier, J. Am. Chem. Soc., 108, 5708 (1986).
          162   R. F. Nalewajski, Top. Catal., 11/12, 469 (2000).
          163
             A. Michalak, F. De Proft, P. Geerlings, and R. F. Nalewajski, J. Phys. Chem. A, 103, 762 (1999); F.
             Gilardoni, J. Weber, H. Chermette, and T. R. Ward, J. Phys. Chem. A, 102, 3607 (1998).
   115   116   117   118   119   120   121   122   123   124   125