Page 159 - Advanced Organic Chemistry Part A - Structure and Mechanisms, 5th ed (2007) - Carey _ Sundberg
P. 159

Of course, the high conversion required for high enantiomeric purity when the relative  139
          reactivity difference is low has a serious drawback. The yield of the unreacted substrate
          is low if the overall conversion is high. Relative reactivity differences of < 10 can  SECTION 2.1
          achieve high enantiomeric purity only at the expense of low yield.              Configuration
              Scheme 2.5 gives some specific examples of kinetic resolution procedures. Entries
          1to 3 in Scheme 2.5 are acylation reactions in which esters are formed. Either the



                            Scheme 2.5. Examples of Kinetic Resolution
                                     O
           1 a  N     CHCH 3  +  (PhOCHC) 2 O    N     CHCH 3    +   PhOCHCO 2 H
                      OH           CH                  O CCHOPh        CH 3
                                                        2
                 S-enantiomer    racemic 3                        S-enantiomer
                                                          CH
                                                  92% R, S-ester  3  84% e.e.
                                                  8% S, S ester
           2 b       OCH 3              +               OCH
                                     NH 3     +            3
                          +  (CH ) CH        H
                               3 2
                     OH              CO 2 –            O C  CH(CH 3 ) 2
                             L-valine                    2
                racemic, trans                              NH 2
                                                   27% yield, 96% d.e.
                                                                   CH
                                                                     3
                                                                 O CCCCl 3
                                                                  2
                        OH            CH 3 O                     CH  CH 3  +
           3 c                                                     3
                          CH 3  +  Cl CCOC N+     ZnCl 2
                                    3
                                                         S-enantiomer   OH
                                                         91% e.e.
                                      CH 3
                                      CH 3 O  C(CH )
                 racemic                      3 3                         CH 3
                                                                R-enantiomer
                                                             38% e.e. at 30% conversion
           4 d
                              Ti(Oi Pr) 4
                    N CH CHPh              N CH CHPh
                                                2
                       2
                              t BuOOH
                        OH                      OH
                              (+)-diisopropyl
                              tartrate
                                               recovered 37% yield, 95% e.e.
                    OH                      OH
           5 e                  S-BINAP
                              Ru(OAc) , H           R-enantiomer
                       CH 3         2  2       CH
                                                 3
                                                    recovered yield 48%, 96% e.e.
                                 Ti(Oi Pr) 4       O
           6 f
                                 R-BINOL
                  CH        SCH          CH        SCH
                     3         3           3          3
                                 t BuOOH
                                           31% yield, 97% e.e.
           a. U. Salz and C. Rüchardt, Chem. Ber., 117, 3457 (1984).
           b. P. Stead, H. Marley, M. Mahmoudian, G. Webb, D. Noble, Y. T. Ip, E. Piga, S. Roberts, and M. J. Dawson,
             Tetrahedron: Asymmetry, 7, 2247 (1996).
           c. E. Vedejs and X. Chen, J. Am. Chem. Soc., 118, 1809 (1996).
           d. S. Miyano, L. D. Lu, S. M. Viti, and K. B. Sharpless, J. Org. Chem., 48, 3608 (1983).
           e. M. Kitmura, I. Kasahara, K. Manabe, R. Noyori, and H. Takaya, J. Org. Chem., 53, 708 (1988).
           f. N. Komatsu, M. Hashizuma, T. Sugita, and S. Uemura, J. Org. Chem., 58, 7624 (1993).
   154   155   156   157   158   159   160   161   162   163   164