Page 73 - Advanced Organic Chemistry Part A - Structure and Mechanisms, 5th ed (2007) - Carey _ Sundberg
P. 73

52                Table 1.10. Comparison of Differences in kcal/mol between Computed and Experimental
                                               H for Some Hydrocarbons
                                                 f
     CHAPTER 1
                                           MNDO a      AM1 b     PM3 c     HF/6-31G ∗a   G2 d
     Chemical Bonding
     and Molecular Structure  Methane         5 9        9 0      4 9        −0 5         0 7
                       Ethane                 0 3        2 6      2 1         0 9       −0 2
                       Butane                 0 7       −0 7      1 3        −0 8       −0 6
                       Pentane                0 7       −2 8      0 6        −0 5
                       Cyclopentane         −11 9      −10 4     −5 6         4 0       −0 4
                       Cyclohexane           −5 3       −9 0     −1 5         3 1         3 9
                       Cyclopropane                                                     −1 6
                       Cyclobutane                                                      −1 5
                       Bicyclo[1.1.0]butane                                             −1 5
                       Bicyclo[2.2.1]heptane  2 1       −2 0     −1 3         8 8
                       Bicyclo[2.2.2]octane  −2 2      −11 9     −3 7        10 7
                       Ethene                 3 1        4 0      4 2        −2 4         0 3
                       Allene                −1 6        0 6      1 5        −6 8         0 0 e
                       1,3-Butadiene          2 7        3 6      5 0        −2 9         0 5 f
                       Benzene                1 5        2 2      3 6                     4 0 g
                       a. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart, J. Am. Chem. Soc., 107, 3902 (1985).
                       b. M. J. S. Dewar and D. M. Storch, J. Am. Chem. Soc., 107, 3898 (1985).
                       c. J. J. P. Stewart, J. Comput. Chem., 10, 221 (1989).
                       d. J. A. Pople, M. Head-Gordon, D. J. Fox, K. Raghavachari, and L. A. Curtiss, J. Chem. Phys., 90, 5622 (1989);
                         L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, J. Chem. Phys., 94, 7221 (1991); L. A. Curtiss,
                         K. Raghavachari, P. C. Redfern, and J. Pople, J. Phys. Chem., 106, 1063 (1997).
                       e. D. W. Rogers and F. W. McLafferty, J. Phys. Chem., 99, 1375 (1993).
                       f. M. N. Glukhovtsev and S. Laiter, Theor. Chim. Acta, 92, 327 (1995).
                       g. A. Nicolaides and L. Radom, J. Phys. Chem., 98, 3092 (1994).


                       The results using HF/4-31G 63  and HF/6-31G ∗∗64  for some common substituents are
                       given below. They indicate that both electron-donating groups, such as amino and
                       methoxy, and electron-withdrawing groups, such as formyl and cyano, have a stabi-
                       lizing effect on double bonds. This is consistent with the implication of resonance that
                       there is a stabilizing interaction as a result of electron delocalization.

                                                 Stabilization (kcal/mol)

                                        Substituent   HF/4-31G      HF/6-31G ∗∗
                                                         3 2           3 05
                                          CH 3
                                                        11 2           7 20
                                          NH 2
                                          OH             6 6           6 43
                                                         6 1
                                          OCH 3
                                          F                            0 99
                                          Cl                          −0 54
                                          CH=O           4 5
                                          CN             2 4
                                                        −2 5
                                          CF 3
                           The dipole moments of molecules depend on both the molecular dimensions and
                       the electron distribution. For example, Z-1,2-dichloroethene has a dipole moment of
                       1.90 D,whereas,owingtoitssymmetricalstructure,theE isomerhasnomoleculardipole.

                        63   A. Greenberg and T. A. Stevenson, J. Am. Chem. Soc., 107, 3488 (1985).
                        64
                          K. B. Wiberg and K. E. Laidig, J. Org. Chem., 57, 5092 (1992).
   68   69   70   71   72   73   74   75   76   77   78