Page 40 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 40

12                              Table 1.2. Stereoselectivity of Enolate Formation a

      CHAPTER 1                 Reactant       Base     THF (hexane) (Z:E)  THF (23% HMPA) (Z:E)
      Alkylation of Enolates  Ketones
      and Other Carbon                  b	c  LDA             30:70              92:8
      Nucleophiles        CH 3 CH 2 COCH 2 CH 3
                                        b
                          CH 3 CH 2 COCH 2 CH 3  LiTMP       20:80
                                        b
                          CH 3 CH 2 COCH 2 CH 3  LiHMDS      34:66
                                         b
                          CH 3 CH 2 COCH CH 3   2  LDA       56:44
                                         b
                          CH 3 CH 2 COCH CH 3   2  LiHMDS   > 98
2
                                         d                   100:0
                          CH 3 CH 2 COCH CH 3   2  LiNPh 2
                                         e   LiTMP.LiBr       4:96
                          CH 3 CH 2 COCH CH 3   2
                                        b    LDA            < 2
98
                          CH 3 CH 2 COC CH 3   3
                          CH 3 CH 2 COPh b   LDA            > 97
3
                          Esters
                                        f    LDA              6:94             88:15
                          CH 3 CH 2 CO 2 CH 2 CH 3
                                     g       LDA              5:95             77:23
                          CH 3 CO 2 C CH 3   3
                                       g     LDA              9:91             84:16
                          CH 3  CH 2   3 CO 2 CH 3
                                    h        LDA             19:81              91:9
                          PhCH 2 CO 2 CH 3
                          Amides
                          CH 3 CH 2 CON C 2 H 5    i  LDA i  > 97
3
                                        2
                                        i
                          CH 3 CH 2 CON CH 2   4  LDA       > 97
3
                          a. From a more extensive compilation given by C. H. Heathcock, Modern Synthetic Methods, 6, 1 (1992).
                          b. C. H. Heathcock, C. T. Buse, W. A. Kleschick, M. C. Pirrung, J. E. Sohn, and J. Lampe, J. Org. Chem., 45,
                           1066 (1980).
                          c. Z. A. Fataftah, I. E. Kopka, and M. W. Rathke, J. Am. Chem. Soc., 102, 3959 (1980).
                          d. L. Xie, K. Vanlandeghem, K. M. Isenberger, and C. Bernier, J. Org. Chem., 68, 641 (2003).
                          e. P. L. Hall, J. H. Gilchrist, and D. B. Collum, J. Am. Chem. Soc., 113, 9571 (1991).
                          f. R. E. Ireland, P. Wipf, and J. D. Armstrong, III, J. Org. Chem., 56, 650 (1991).
                          g. R. E. Ireland, R. H. Mueller, and A. K. Willard, J. Am. Chem. Soc., 98, 2868 (1976).
                          h. F. Tanaka and K. Fuji, Tetrahedron Lett., 33, 7885 (1992).
                          i. J. M. Takacs, Ph. D. Thesis, California Institute of Technology, 1981.
                       It has been suggested that this stereoselectivity might arise from a chelated TS in the
                       case of the less basic LiHMDS.
                              H     OCH
                                       3                          H
                                               H    OCH 3  TBDMS  O    OCH 3   TBDMSO   OCH
                       TBDMS  O     O                                                       3
                                                                  H     O
                               H Li       TBDMSO    O –                            H    O –
                                                                     N  Li
                                 N
                                               Z-enolate                            E-enolate
                           (CH ) Si  Si(CH )
                             3 3       3 3
                           Kinetically controlled deprotonation of  , -unsaturated ketones usually occurs

                       preferentially at the   -carbon adjacent to the carbonyl group. The polar effect of the
                       carbonyl group is probably responsible for the faster deprotonation at this position.
                                                                        –
                                              O                        O Li +
                                                                +
                                                            3 2 Li
                                                       NCH(CH )
                                       CH 3           THF, 0°C  CH 3
                                            CH 3                     CH 3
                                                                  (only enolate)
                                                                                       Ref. 20
                        20
                          R. A. Lee, C. McAndrews, K. M. Patel, and W. Reusch, Tetrahedron Lett., 965 (1973).
   35   36   37   38   39   40   41   42   43   44   45