Page 405 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 405

378

      CHAPTER 5                                              PPh 2
      Reduction of                                           PPh 2
      Carbon-Carbon Multiple
      Bonds, Carbonyl
      Groups, and Other
      Functional Groups                              BINAP


                       Ruthenium complexes containing this ligand are able to reduce a variety of double
                       bonds with e.e. above 95%. In order to achieve high enantioselectivity, the reactant
                       must show a strong preference for a specific orientation when complexed with the
                       catalyst. This ordinarily requires the presence of a functional group that can coordinate
                       with the metal. The ruthenium-BINAP catalyst has been used successfully with unsat-
                                                               24
                                   23
                       urated amides, allylic and homoallylic alcohols, and unsaturated carboxylic acids. 25
                                CH 3    CH 3      Ru(S-BINAP)(OAc) 2  CH 3  CH 3

                             CH 3             OH               CH 3              OH
                                                                                 99% e.e.  Ref. 12


                       The mechanism of such reactions using unsaturated carboxylic acids and
                       Ru BINAP  O CCH   is consistent with the idea that coordination of the carboxy
                                        3 2
                                   2
                                                             26
                       group establishes the geometry at the metal ion. The configuration of the new stereo-
                       center is then established by the hydride transfer. In this particular mechanism, the
                       second hydrogen is introduced by protonolysis, but in other cases a second hydride
                       transfer step occurs.
                                                   R                 R   –
                                                           H +
                                                O     H 2         O
                                             P     O            P    O
                                             *  Ru             *  Ru
                                             P     O            P     O  O
                                                O                 H
                                              H
                                           CO 2
                                           *
                                           CO H
                                             2
                                                   R                 R   –
                                                O                 O
                                             P     O            P    O
                                             *  Ru             *  Ru
                                             P     O           P     O
                                                O          H +
                                                                        O
                                                   *                 *



                        23
                          R. Noyori, M. Ohta, Y. Hsiao, M. Kitamura, T. Ohta, and H. Takaya, J. Am. Chem. Soc., 108, 7117
                          (1986).
                        24   H. Takaya, T. Ohta, N. Sayo, H. Kumobayashi, S. Akutagawa, S. Inoue, I. Kasahara, and R. Noyori,
                          J. Am. Chem. Soc., 109, 1596 (1987).
                        25   T. Ohta, H. Takaya, M. Kitamura, K. Nagai, and R. Noyori, J. Org. Chem., 52, 3174 (1987).
                        26
                          M. T. Ashby and J. T. Halpern, J. Am. Chem. Soc., 113, 589 (1991).
   400   401   402   403   404   405   406   407   408   409   410